
Learning with signatures

Conférence TRAG 2019

Adeline Fermanian

Nancy, October 10th 2019

Supervisors

Benôıt Cadre

University Rennes 2
Gérard Biau

Sorbonne University

1

Learning from a data stream

Time series prediction

2

Learning from a data stream

Stereo sound recognition

3

Learning from a data stream

Automated medical diagnosis from sensor data

4

Learning from a data stream

Recognition of characters or handwriting

5

Common feature

The predictor is a path X : [a, b]→ Rd .

6

Google ”Quick, Draw!” dataset

50 million drawings, 340 classes

7

Data representation

A sample from the class flower

x and y coordinates

8

Data representation

A sample from the class flower x and y coordinates

8

Data representation

A sample from the class flower Time reversed

9

Data representation

A sample from the class flower x and y at a different speed

10

The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.

11

The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.

11

The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.

11

The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.

11

The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.

11

Table of contents

1. Definition and basic properties

2. Learning with signatures

3. Truncation order

4. Path embeddings

5. Performance of signatures

12

Definition and basic properties

A brief history

Chen’s work for piecewise smooth paths.

 ANNALS OF MATFIEMATICS

 Vol. 65, No. 1, January, 1957
 Printed in U.S.A.

 INTEGRATION OF PATHS, GEOMETRIC INVARIANTS AND A

 GENERALIZED BAKER-HAUSDORFF FORMULA

 BY KUO-TSAI CIREN

 (Received October 17, 1955)

 (Revised May 28, 1956)

 Let a: (al(t), * * , a,(t)), a < t < b, be a path in the affine m-space Rm.

 Starting from the line integral dxi, we define inductively, for p > 2, a

 f dxl* = f (f dx* dxip,.) dai(t)

 where at denotes the portion of a with the parameter ranging from a to t. It is

 observed that dx1, Ad dxip acts as a pth order contravariant tensor associ-

 ated with the path a when Rm undergoes a linear transformation. Some affine
 and euclidean invariants of a are derived from these tensors. Moreover, we asso-
 ciate to the path a the formal power series

 0(ct) = 1 + E* E (f dxi* dxiX) ... Xi

 where XI, Y, Xm are noncommutative indeterminates. Theorem 4.2 asserts
 that log 0(a) is a Lie element, i.e., a formal power series ul + * * * + up + **,
 where each up is a form of degree p generated by X, ...*, Xm through taking
 bracket products and forming linear combinations. We obtain, as a corollary,
 the Baker-Hausdorff formula which states that, if X and Y are noncommutative
 indeterminates, then log (exp X exp Y) is a Lie element.

 Section 1 supplies first some basic knowledge about non-commutative formal
 power series and then some preparatory definitions and formulas for Theorems
 4.1 and 4.2. In Section 2, the iterated integration of paths is defined; and, in

 Section 3, its geometric applications are indicated. Section 4 contains mainly the
 proof of the generalized Baker-Hausdorff formula which is further extended, in
 Section 5, to the case where the affine space Rm is replaced by a differentiable
 mainfold. For those who are only interested in the geometric aspect of this paper,
 Sections 2 and 3 may be easily read without Section 1.

 This paper is a continuation of the author's work in [Chen, (3)] and is some-
 what related to the paper [Chen, (2)]. The proof of Lemma 1.2 is essentially
 Hausdorff's, in which Lemma 1.1 is implicitly used. Its proof, not an obvious one,
 is furnished in this paper. Though borrowing some of Hausdorff's technique,
 Theorem 4.2 is proved in a simpler way and offers a stronger result than the
 Baker-Hausdorff formula.

 163

This content downloaded from 134.157.146.115 on Fri, 12 Jul 2019 13:08:32 UTC
All use subject to https://about.jstor.org/terms

13

A brief history

Lyons’ extension to rough paths.

14

A brief history

Machine learning applications are ↗.

DeepWriterID: An End-to-end Online Text-independent

Writer Identification System

Weixin Yang, Lianwen Jin*, Manfei Liu
College of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

wxy1290@163.com, *lianwen.jin@gmail.com

Abstract—Owing to the rapid growth of touchscreen mobile
terminals and pen-based interfaces, handwriting-based writer
identification systems are attracting increasing attention for
personal authentication and digital forensics. However, most
studies on writer identification have not been satisfying because of
the insufficiency of data and the difficulty of designing good
features for various conditions of handwriting samples. Hence, we
introduce an end-to-end system called DeepWriterID that employs
a deep convolutional neural network (CNN) to address these
problems. A key feature of DeepWriterID is a new method we are
proposing, called DropSegment. It is designed to achieve data
augmentation and to improve the generalized applicability of CNN.
For sufficient feature representation, we further introduce path-
signature feature maps to improve performance. Experiments
were conducted on the NLPR handwriting database. Even though
we only use pen-position information in the pen-down state of the
given handwriting samples, we achieved new state-of-the-art
identification rates of 95.72% for Chinese text and 98.51% for
English text.

Keywords—Online text-independent writer identification;
convolutional neural network; deep learning; DropSegment; path-
signature feature maps.

1. INTRODUCTION

Writer identification is a task of determining a list of
candidate writers according to the degree of similarity between
their handwriting and a sample of unknown authorship [1].
Currently, it is popular owing to the development and
commercialization of touchscreen or pen-enabled electronic
devices such as smartphones, and tablet PCs. Its wide range of
downstream uses include distinguishing forensic trace evidence,
performing mobile bank transactions, and authenticating access
to networks. Since most of these applications are closely related
to the purpose of assuring personal and property security,
handwriting identification merits more attention from academia
and industry.

Identifying the handwriting of a writer is one of the highly
challenging problems in the fields of artificial intelligence and
pattern recognition. Conventionally, handwriting identification
systems follow a sequence of data acquisition, data
preprocessing, feature extraction, and classification [2].
Research into handwriting identification has been focused on
two categories: offline and online. Offline handwritten materials
are considered more general but harder to identify, as they
contain merely scanned image information. In contrast, systems

Figure 1. Illustration of DeepWriterID for online handwriting-based
writer identification.

15

Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Example: Xt = (X 1
t ,X

2
t) = (cos t, sin t), t ∈ [0, 1].

16

Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Example: Xt = (X 1
t ,X

2
t) = (cos t, sin t), t ∈ [0, 1].

16

Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Example: Xt = (X 1
t ,X

2
t) = (cos t, sin t), t ∈ [0, 1].

16

Path integral

• X : [0, 1]→ R path of bounded variation.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X∫ 1

0

YtdXt

is well-defined.

17

Path integral

• X : [0, 1]→ R path of bounded variation.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X∫ 1

0

YtdXt

is well-defined.

17

Path integral

• X : [0, 1]→ R path of bounded variation.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X∫ 1

0

YtdXt

is well-defined.

• Example: Xt continuously differentiable:∫ 1

0

YtdXt =

∫ 1

0

YtẊtdt

17

Path integral

• X : [0, 1]→ R path of bounded variation.

• Y : [0, 1]→ R a continuous path.

• Riemann-Stieljes integral of Y against X∫ 1

0

YtdXt

is well-defined.

• Example: Yt = 1 for all t ∈ [0, 1]:∫ 1

0

YtdXt =

∫ 1

0

dXt = X1 − X0.

17

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0

→ a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s

→ a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X)[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X)[0,t] =

∫
0<s<t

S i (X)[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik)(X)[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik)(X)[0,1] is the k-fold iterated integral of X along i1, . . . , ik .

18

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S1(X), . . . ,Sd(X),S (1,1)(X),S (1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k
S (i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

19

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S1(X), . . . ,Sd(X),S (1,1)(X),S (1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k
S (i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

19

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S1(X), . . . ,Sd(X),S (1,1)(X),S (1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k
S (i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

19

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S1(X), . . . ,Sd(X),S (1,1)(X),S (1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k
S (i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

19

Signature

Definition
The signature of X is the sequence of real numbers

S(X) = (1,S1(X), . . . ,Sd(X),S (1,1)(X),S (1,2)(X), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik)⊂{1,...,d}k
S (i1,...,ik)(X)ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·

19

Example

For Xt = (X 1
t ,X

2
t),

X1 =
(∫ 1

0
dX 1

t

∫ 1

0
dX 2

t

)
=
(
X 1
1 − X 1

0 X 2
1 − X 2

0

)

X2 =

(∫ 1

0

∫ t

0
dX 1

s dX
1
t

∫ 1

0

∫ t

0
dX 1

s dX
2
t∫ 1

0

∫ t

0
dX 2

s dX
1
t

∫ 1

0

∫ t

0
dX 2

s dX
2
t

)

20

Example

For Xt = (X 1
t ,X

2
t),

X1 =
(∫ 1

0
dX 1

t

∫ 1

0
dX 2

t

)
=
(
X 1
1 − X 1

0 X 2
1 − X 2

0

)

X2 =

(∫ 1

0

∫ t

0
dX 1

s dX
1
t

∫ 1

0

∫ t

0
dX 1

s dX
2
t∫ 1

0

∫ t

0
dX 2

s dX
1
t

∫ 1

0

∫ t

0
dX 2

s dX
2
t

)

20

Example

For Xt = (X 1
t ,X

2
t),

X1 =
(∫ 1

0
dX 1

t

∫ 1

0
dX 2

t

)
=
(
X 1
1 − X 1

0 X 2
1 − X 2

0

)

X2 =

(∫ 1

0

∫ t

0
dX 1

s dX
1
t

∫ 1

0

∫ t

0
dX 1

s dX
2
t∫ 1

0

∫ t

0
dX 2

s dX
1
t

∫ 1

0

∫ t

0
dX 2

s dX
2
t

)

20

Truncated signature

• Truncated signature at order m:

Sm(X) = (1,X1,X2, . . . ,Xm).

• Dimension:

sd(m) =
m∑
i=0

d i =
dm+1 − 1

d − 1
.

21

Truncated signature

• Truncated signature at order m:

Sm(X) = (1,X1,X2, . . . ,Xm).

• Dimension:

sd(m) =
m∑
i=0

d i =
dm+1 − 1

d − 1
.

21

Geometric interpretation

22

Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + X1t.

• For any I = (i1, . . . , ik),

S I (X) =
1

k!

k∏
j=1

X
ij
1 .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.

23

Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + X1t.

• For any I = (i1, . . . , ik),

S I (X) =
1

k!

k∏
j=1

X
ij
1 .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.

23

Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + X1t.

• For any I = (i1, . . . , ik),

S I (X) =
1

k!

k∏
j=1

X
ij
1 .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.

23

Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + X1t.

• For any I = (i1, . . . , ik),

S I (X) =
1

k!

k∏
j=1

X
ij
1 .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.

23

Properties 1

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.

• ψ : [0, 1]→ [0, 1] a reparametrization

• If X̃t = Xψ(t), then

S(X̃) = S(X).

. A key advantage of the signature modeling.

. Encoding of the geometric properties of paths.

24

Properties 1

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.

• ψ : [0, 1]→ [0, 1] a reparametrization

• If X̃t = Xψ(t), then

S(X̃) = S(X).

. A key advantage of the signature modeling.

. Encoding of the geometric properties of paths.

24

Properties 1

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.

• ψ : [0, 1]→ [0, 1] a reparametrization

• If X̃t = Xψ(t), then

S(X̃) = S(X).

. A key advantage of the signature modeling.

. Encoding of the geometric properties of paths.

24

Properties 1

Invariance under time reparametrization

• X : [0, 1]→ Rd a path.

• ψ : [0, 1]→ [0, 1] a reparametrization

• If X̃t = Xψ(t), then

S(X̃) = S(X).

. A key advantage of the signature modeling.

. Encoding of the geometric properties of paths.

24

Properties 2

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y) = S(X)⊗ S(Y).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Super fast packages and libraries available in C++ and Python.

25

Properties 2

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y) = S(X)⊗ S(Y).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Super fast packages and libraries available in C++ and Python.

25

Properties 2

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y) = S(X)⊗ S(Y).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Super fast packages and libraries available in C++ and Python.

25

Properties 2

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y) = S(X)⊗ S(Y).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Super fast packages and libraries available in C++ and Python.

25

Properties 3

Uniqueness results

• Chen (1958): piecewise regular paths.

• Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and ‘Y run

backwards’ is a Lipschitz tree-like path.

• Boedihardjo et al. (2016): extension to weakly geometric

rough paths.

. The signature characterizes paths.

. Tools from hyperbolic geometry, Lie groups...

26

Properties 3

Uniqueness results

• Chen (1958): piecewise regular paths.

• Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and ‘Y run

backwards’ is a Lipschitz tree-like path.

• Boedihardjo et al. (2016): extension to weakly geometric

rough paths.

. The signature characterizes paths.

. Tools from hyperbolic geometry, Lie groups...

26

Properties 3

Uniqueness results

• Chen (1958): piecewise regular paths.

• Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and ‘Y run

backwards’ is a Lipschitz tree-like path.

• Boedihardjo et al. (2016): extension to weakly geometric

rough paths.

. The signature characterizes paths.

. Tools from hyperbolic geometry, Lie groups...

26

Properties 3

Uniqueness results

• Chen (1958): piecewise regular paths.

• Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and ‘Y run

backwards’ is a Lipschitz tree-like path.

• Boedihardjo et al. (2016): extension to weakly geometric

rough paths.

. The signature characterizes paths.

. Tools from hyperbolic geometry, Lie groups...

26

Properties 3

Uniqueness results

• Chen (1958): piecewise regular paths.

• Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and ‘Y run

backwards’ is a Lipschitz tree-like path.

• Boedihardjo et al. (2016): extension to weakly geometric

rough paths.

. The signature characterizes paths.

. Tools from hyperbolic geometry, Lie groups...

26

Properties 3

Uniqueness
If X has at least one monotonous coordinate, then S(X) determines X

uniquely.

. Trick: add a dummy monotonous component to X .

. Important concept of embedding.

27

Properties 3

Uniqueness
If X has at least one monotonous coordinate, then S(X) determines X

uniquely.

. Trick: add a dummy monotonous component to X .

. Important concept of embedding.

27

Properties 4

Can we reconstruct the path from its signature ?

• Currently a lot of work in this direction.

• A simple procedure has been derived for piecewise linear paths by

Lyons and Xu (2017)

. Applications in signal processing, e.g., sound compression.

28

Properties 4

Can we reconstruct the path from its signature ?

• Currently a lot of work in this direction.

• A simple procedure has been derived for piecewise linear paths by

Lyons and Xu (2017)

. Applications in signal processing, e.g., sound compression.

28

Properties 4

Can we reconstruct the path from its signature ?

• Currently a lot of work in this direction.

• A simple procedure has been derived for piecewise linear paths by

Lyons and Xu (2017)

. Applications in signal processing, e.g., sound compression.

28

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd .

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X)− 〈w ,S(X)〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.

29

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd .

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X)− 〈w ,S(X)〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.

29

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd .

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X)− 〈w ,S(X)〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.

29

Properties 5

Signature approximation

• D compact subset of paths from [0, 1] to Rd .

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X)− 〈w ,S(X)〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.

29

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.

• Then, for any k ≥ 0, I ⊂ {1, . . . d}k ,

|S I (X)| ≤ ‖X‖
k
1-var

k!
.

. Useful for approximation properties.

30

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.

• Then, for any k ≥ 0, I ⊂ {1, . . . d}k ,

|S I (X)| ≤ ‖X‖
k
1-var

k!
.

. Useful for approximation properties.

30

Properties 6

Exponential decay of signature coefficients

• X : [0, 1]→ Rd a path.

• Then, for any k ≥ 0, I ⊂ {1, . . . d}k ,

|S I (X)| ≤ ‖X‖
k
1-var

k!
.

. Useful for approximation properties.

30

Learning with signatures

Parametric supervised machine learning

• Goal: Understand the relationship between an input X ∈ X and an

output Y ∈ Y, typically written as

Y = f (X) + ε.

• Data: (x1, y1), . . . , (xn, yn) ∈ X × Y i.i.d.

• Prediction function: fθ ≈ f , parameterized by θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

31

Parametric supervised machine learning

• Goal: Understand the relationship between an input X ∈ X and an

output Y ∈ Y, typically written as

Y = f (X) + ε.

• Data: (x1, y1), . . . , (xn, yn) ∈ X × Y i.i.d.

• Prediction function: fθ ≈ f , parameterized by θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

31

Parametric supervised machine learning

• Goal: Understand the relationship between an input X ∈ X and an

output Y ∈ Y, typically written as

Y = f (X) + ε.

• Data: (x1, y1), . . . , (xn, yn) ∈ X × Y i.i.d.

• Prediction function: fθ ≈ f , parameterized by θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

31

Parametric supervised machine learning

• Goal: Understand the relationship between an input X ∈ X and an

output Y ∈ Y, typically written as

Y = f (X) + ε.

• Data: (x1, y1), . . . , (xn, yn) ∈ X × Y i.i.d.

• Prediction function: fθ ≈ f , parameterized by θ ∈ Rp.

y1 = 1 y2 = 1 y3 = 2 y4 = 3 y5 = 2

31

Parametric supervised machine learning

• Loss function ` : Y × Y → R+.

• Empirical risk minimization: choose

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

`
(
yi , fθ(xi)

)
.

Least squares regression

• X = Rp, Y = R.

• fθ(x) = θT x for any x ∈ Rp.

• Quadratic loss `(y , fθ(x)) = (y − fθ(x))2

32

Parametric supervised machine learning

• Loss function ` : Y × Y → R+.

• Empirical risk minimization: choose

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

`
(
yi , fθ(xi)

)
.

Least squares regression

• X = Rp, Y = R.

• fθ(x) = θT x for any x ∈ Rp.

• Quadratic loss `(y , fθ(x)) = (y − fθ(x))2

32

Parametric supervised machine learning

• Loss function ` : Y × Y → R+.

• Empirical risk minimization: choose

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

`
(
yi , fθ(xi)

)
.

Least squares regression

• X = Rp, Y = R.

• fθ(x) = θT x for any x ∈ Rp.

• Quadratic loss `(y , fθ(x)) = (y − fθ(x))2

32

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(. . . ρ(T1x))))

• L layers.

• ρ : R→ R activation function (e.g., ReLu ρ(x) = max(x , 0)).

• Tl affine linear transformation between layers:

Tlx = Wlx + bl , l = 1, . . . , L.

• σ output function.

33

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(. . . ρ(T1x))))

• L layers.

• ρ : R→ R activation function (e.g., ReLu ρ(x) = max(x , 0)).

• Tl affine linear transformation between layers:

Tlx = Wlx + bl , l = 1, . . . , L.

• σ output function.

33

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(. . . ρ(T1x))))

• L layers.

• ρ : R→ R activation function (e.g., ReLu ρ(x) = max(x , 0)).

• Tl affine linear transformation between layers:

Tlx = Wlx + bl , l = 1, . . . , L.

• σ output function.

33

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(. . . ρ(T1x))))

• L layers.

• ρ : R→ R activation function (e.g., ReLu ρ(x) = max(x , 0)).

• Tl affine linear transformation between layers:

Tlx = Wlx + bl , l = 1, . . . , L.

• σ output function.

33

Feedforward neural network

fθ(x) = σ(TLρ(TL−1ρ(. . . ρ(T1x))))

• L layers.

• ρ : R→ R activation function (e.g., ReLu ρ(x) = max(x , 0)).

• Tl affine linear transformation between layers:

Tlx = Wlx + bl , l = 1, . . . , L.

• σ output function.

33

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints → high dimensional signature

coefficients → small dense network → prediction.

34

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints → high dimensional signature

coefficients → small dense network → prediction.

34

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints

→ high dimensional signature

coefficients → small dense network → prediction.

34

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints → high dimensional signature

coefficients

→ small dense network → prediction.

34

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints → high dimensional signature

coefficients → small dense network

→ prediction.

34

Signature + learning algorithm

. Yang et al. (2017): skeleton-based human action recognition.

. Sequence of positions of human joints → high dimensional signature

coefficients → small dense network → prediction.

34

Temporal approaches

• Idea: construct a path of signature coefficients.

• Procedure:

1. Divide the time interval into a partition

0 < 2−q < · · · < j2−q < · · · < 1.

2. Compute the signature on each interval [j2−q; (j + 1)2−q].

3. The signature sequence S is the input of a recurrent network.

. Lai et al. (2017) and Liu et al. (2017): writer recognition.

35

Temporal approaches

• Idea: construct a path of signature coefficients.

• Procedure:

1. Divide the time interval into a partition

0 < 2−q < · · · < j2−q < · · · < 1.

2. Compute the signature on each interval [j2−q; (j + 1)2−q].

3. The signature sequence S is the input of a recurrent network.

. Lai et al. (2017) and Liu et al. (2017): writer recognition.

35

Temporal approaches

• Idea: construct a path of signature coefficients.

• Procedure:

1. Divide the time interval into a partition

0 < 2−q < · · · < j2−q < · · · < 1.

2. Compute the signature on each interval [j2−q; (j + 1)2−q].

3. The signature sequence S is the input of a recurrent network.

. Lai et al. (2017) and Liu et al. (2017): writer recognition.

35

Temporal approaches

• Idea: construct a path of signature coefficients.

• Procedure:

1. Divide the time interval into a partition

0 < 2−q < · · · < j2−q < · · · < 1.

2. Compute the signature on each interval [j2−q; (j + 1)2−q].

3. The signature sequence S is the input of a recurrent network.

. Lai et al. (2017) and Liu et al. (2017): writer recognition.

35

Temporal approaches

• Idea: construct a path of signature coefficients.

• Procedure:

1. Divide the time interval into a partition

0 < 2−q < · · · < j2−q < · · · < 1.

2. Compute the signature on each interval [j2−q; (j + 1)2−q].

3. The signature sequence S is the input of a recurrent network.

. Lai et al. (2017) and Liu et al. (2017): writer recognition.

35

Recurrent neural network

→ A neural network for sequences.

36

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.

37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.
37

Image approaches

• Idea: create images of signature coefficients.

• Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

4. This yields 2m+1 − 1 sparse gray pictures.

. Graham (2013) and Yang et al. (2016): character recognition.
37

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Construction of one signature image

• Procedure:

1. Consider a window of size 2δ + 1 centered at ti .

2. Compute the signature coefficient over [ti − δ; ti + δ].

3. Store the value obtained as gray level at the pixel corresponding to ti .

4. Move the window to the next point and iterate.

38

Convolutional neural networks

→ A neural network for images.

39

Questions

Data → Continuous path → Signature → Algorithm.

• How should we choose the order of truncation?

• Which path embedding should we use?

40

Questions

Data → Continuous path → Signature → Algorithm.

• How should we choose the order of truncation?

• Which path embedding should we use?

40

Truncation order

Least squares linear regression

Linear model between x = (x1, . . . , xp) ∈ Rp and y ∈ R:

y = β0 + β1x
1 + · · ·+ βpx

p + ε, ε ∼ N (0, σ2).

Goal: given i.i.d. data (x1, y1), . . . , (xn, yn), find β̂ that minimizes the em-

pirical risk

Rn(β) =
n∑

i=1

(yi − βT xi)
2.

41

Regression model on the signature

• X : [0, 1]→ Rd a path.

• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd (m
∗) such that

Y = 〈β∗,Sm∗
(X)〉+ ε,

where

E(ε|X) = 0 and Var(ε|X) = σ2 <∞.

• Goal: estimate β∗ and m∗.

42

Regression model on the signature

• X : [0, 1]→ Rd a path.

• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd (m
∗) such that

Y = 〈β∗,Sm∗
(X)〉+ ε,

where

E(ε|X) = 0 and Var(ε|X) = σ2 <∞.

• Goal: estimate β∗ and m∗.

42

Regression model on the signature

• X : [0, 1]→ Rd a path.

• Assumption: there exists m∗ ∈ N, β∗ ∈ Rsd (m
∗) such that

Y = 〈β∗,Sm∗
(X)〉+ ε,

where

E(ε|X) = 0 and Var(ε|X) = σ2 <∞.

• Goal: estimate β∗ and m∗.

42

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any k ∈ N, α > 0,

Bk,α =
{
β ∈ Rsd (k) : ‖β‖2 ≤ α

}
.

• For any β ∈ Bk,α,

Rn(β) =
1

n

n∑
i=1

(
Yi − 〈β,Sk(Xi)〉

)2
.

• For any k ∈ N,

L̂n(k) = inf
β∈Bk,α

Rn(β).

43

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any k ∈ N, α > 0,

Bk,α =
{
β ∈ Rsd (k) : ‖β‖2 ≤ α

}
.

• For any β ∈ Bk,α,

Rn(β) =
1

n

n∑
i=1

(
Yi − 〈β,Sk(Xi)〉

)2
.

• For any k ∈ N,

L̂n(k) = inf
β∈Bk,α

Rn(β).

43

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any k ∈ N, α > 0,

Bk,α =
{
β ∈ Rsd (k) : ‖β‖2 ≤ α

}
.

• For any β ∈ Bk,α,

Rn(β) =
1

n

n∑
i=1

(
Yi − 〈β,Sk(Xi)〉

)2
.

• For any k ∈ N,

L̂n(k) = inf
β∈Bk,α

Rn(β).

43

Estimation of m∗

• Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

• For any k ∈ N, α > 0,

Bk,α =
{
β ∈ Rsd (k) : ‖β‖2 ≤ α

}
.

• For any β ∈ Bk,α,

Rn(β) =
1

n

n∑
i=1

(
Yi − 〈β,Sk(Xi)〉

)2
.

• For any k ∈ N,

L̂n(k) = inf
β∈Bk,α

Rn(β).

43

Estimator:

m̂ = inf
(

argmin
k

(
L̂n(k) + penn(k)

))
.

Additional assumptions:

(H0) There exists KY > 0 such that almost surely |Y | ≤ KY .

(H1) There exists KX > 0 such that almost surely ‖X‖1-var ≤ KX .

44

Result

Theorem
Let 0 < ρ < 1

2 and

penn(k) = Kpenn
−ρ
√
dk+1 − 1,

where Kpen > 0 is a constant. Then, under (H0) and (H1), for all n large

enough,

P(m̂ 6= m∗) ≤ C1 exp(−n1−2ρC2).

Corollary
m̂ converges almost surely towards m∗.

45

Result

Theorem
Let 0 < ρ < 1

2 and

penn(k) = Kpenn
−ρ
√
dk+1 − 1,

where Kpen > 0 is a constant. Then, under (H0) and (H1), for all n large

enough,

P(m̂ 6= m∗) ≤ C1 exp(−n1−2ρC2).

Corollary
m̂ converges almost surely towards m∗.

45

Path embeddings

Embedding
A way of mapping discrete sequential data into a continuous path.

46

Kaggle prediction competition

47

Different embeddings

Original data

stroke 1 (x11 , y
1
1), . . . , (x1p1 , y

1
p1)

stroke 2 (x21 , y
2
1), . . . , (x2p2 , y

2
p2)

...
...

stroke K (xK1 , y
K
1), . . . , (xKpK , y

K
pK)

48

Different embeddings

Original data

stroke 1 (x11 , y
1
1), . . . , (x1p1 , y

1
p1)

stroke 2 (x21 , y
2
1), . . . , (x2p2 , y

2
p2)

...
...

stroke K (xK1 , y
K
1), . . . , (xKpK , y

K
pK)

48

Different embeddings

Original data Raw path

49

Different embeddings

Original data Time path

50

Different embeddings

Original data Stroke path

51

Embedding of path

Original data Stroke path, version 2

52

Embedding of path

Original data Stroke path, version 3

53

Embedding of path

Original data

t → (X 1
t ,X

2
t , t,X

3
t ,X

4
t), where

X 3
t =

{
0 if t < t1

X 1
t−t1 otherwise

X 4
t =

{
0 if t < t1

X 2
t−t1 otherwise.

54

Embedding of path

Original data Lead-lag transformation

55

Quick, Draw! dataset results

Prediction accuracy with a linear NN

56

Quick, Draw! dataset results

Prediction accuracy with Random Forests

57

Quick, Draw! dataset results

Prediction accuracy with 5 nearest neighbors

58

Quick, Draw! dataset results

Prediction accuracy with XGBoost

59

Urban Sound dataset

10 different sounds: car horn, street music, dork barking...

5435 noisy 1-dimensional times series of average size 171 135

60

Urban Sound dataset results

Prediction accuracy with a linear NN

61

Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope

sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)

74 800 12-dimensional times series of average size 3934

62

Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope

sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)

74 800 12-dimensional times series of average size 3934

62

Motion Sense dataset results

Prediction accuracy with XGBoost

63

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Take-home message

. Striking fact: some embeddings seem consistently better.

. Good performance of the lead lag path.

. This is due to intrinsic properties of the signature and the

embedding, not to domain-specific properties.

. It is particularly remarkable as the dimension of the input stream is

different from one dataset to another.

. Conclusion: the lead lag embedding seems to be the best choice,

regardless of the data and algorithm used.

. Computationally cheap and drastically improves prediction accuracy.

64

Performance of signatures

Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

• Quick, Draw!: dense NN with two hidden layers and ReLu activation

(1 523 200 samples for training and 76 160 for validation and test).

• Urban Sound and Motion Sense: Random Forests.

65

Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1.

Urban Sound: 5.

• Quick, Draw!: dense NN with two hidden layers and ReLu activation

(1 523 200 samples for training and 76 160 for validation and test).

• Urban Sound and Motion Sense: Random Forests.

65

Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

• Quick, Draw!: dense NN with two hidden layers and ReLu activation

(1 523 200 samples for training and 76 160 for validation and test).

• Urban Sound and Motion Sense: Random Forests.

65

Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

• Quick, Draw!: dense NN with two hidden layers and ReLu activation

(1 523 200 samples for training and 76 160 for validation and test).

• Urban Sound and Motion Sense: Random Forests.

65

Our plan

• For each dataset: lead lag + lag selection.

• Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

• Quick, Draw!: dense NN with two hidden layers and ReLu activation

(1 523 200 samples for training and 76 160 for validation and test).

• Urban Sound and Motion Sense: Random Forests.

65

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Performance of signature learning

• Quick, Draw!

. State of the art: deep CNN trained with several million of samples.

. Kaggle top 3 accuracy = 95%.

. Our result: small NN + signature features at order 6 = 73%.

• Urban Sound

. State of the art: feature extraction with mixture of experts models.

. Accuracy = 77.36%.

. Our result: Random Forests + signature features at order 5 = 66.8%.

• Motion Sense

. State of the art: deep NN + autoencoders + multi-objective loss.

. F1 score = 92.91.

. Our result: Random Forests + signature features at order 3: 91.

66

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Conclusion

• Our algorithms have not been tuned to a specific application.

• However, they achieve results close to state-of-the-art.

• They require less computing resources and no domain-specific

knowledge.

• A lot of open questions

. Theoretical results on the lead lag path.

. Sparsity in signatures.

. Extension to paths of finite p-variation for p ≥ 2

. ...

67

Thank you!

68

Images taken from

• “An Introduction to Statistical Learning, with applications in R”

(Springer, 2013) with permission from the authors: G. James, D.

Witten, T. Hastie and R. Tibshirani.

• “Hands-On Natural Language Processing with Python” by

Rajalingappaa Shanmugamani, Rajesh Arumugam

• https://towardsdatascience.com “A Comprehensive Guide to

Convolutional Neural Networks — the ELI5 way”

69

	Definition and basic properties
	Learning with signatures
	Truncation order
	Path embeddings
	Performance of signatures

