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Learning from a data stream
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Learning a data stream
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Learning from a data stream
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Automated medical diagnosis from sensor data



Pl e Id)e « w @ slRo=F

fbobodoosicl @idsoll
[0 =BFextovAm wualb®
brom Qomaiiviodetl T w IT8

HERDEANRRI A YA _reTa e
aFo s e THR RN e e XY

< ] WU E= - T
W@CBB*@&M@G-—\W‘EE?M
oo Pl onco BTN M HleyOEE

Ml rlar calleoLTIEN D2
sz P T 1HL EondaMom o

o U TIEEEPTNIMIT 2
Ta=lrPFak <dods 11

Learning from a data stream
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Recognition of characters or handwriting



Common feature

The predictor is a path X : [a, b] — R.




Google " Quick, Draw!” dataset
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Data representation

A sample from the class flower



Data representation

200
150 k
100 /\ /\/ \/
50
0
00 02 0.4 06 08 10

A sample from the class flower x and y coordinates



Data representation

200
150 J
100 / \/\[\
50
0
00 02 0.4 06 08 10

A sample from the class flower Time reversed



Data representation
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The signature will overcome some of these problems.
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The signature will overcome some of these problems.

> It is a transformation from a path to a sequence of coefficients.
> Independent of time parameterization.
> Encodes geometric properties of the path.

> No loss of information.
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A brief history

Chen's work for piecewise smooth paths.

Frampee—
Vol 8, No.1, Jaouary, 1857
it in U5 4

INTEGRATION OF PATHS, GEOMETRIC INVARIANTS AND A
GENERALIZED BAKER-HAUSDORFF FORMULA

Br KvoTews G
eceived October 17, 1955)
(Revised May 2, 1650)
Let a(e(®, -, an(0), @ S ¢ S b, be a path in the affine mspace K™,
Starting from the lin integral | dz., we define inductively, for p 2 2,

f.'zz., . f_' (f.‘dx.‘ dx\,,,) da, (0),

where o denotes the portion of a with the parameter ranging from a to f. It is

- dz,

observed that [ dz,, - dz, acts as a ™ order contravariant tensor associ

ated with the path a when R™ undergoes a linear transformation. Some affine
and euclidean invariants of a are erived from these tensors. Morcover, we asso-
ciate to the path a the formal power series

o0 =1+ Tia B ([ e deg) X -

where Xi , -+, Xa are noncommutative indeterminates. Theorem 42 asserts
that log 6(a) is & Lie element, rmal power series u + -

whare sach s i & form of degreo p gencated by Xi, - , Xa. throngh taking
bracket products and forming linear combinations. We obtain, as a corollary,
the Baker-Hausdorff formula which states that, if X and ¥ are noncommutative
indeterminates, then log (exp X -exp ¥) is a Lie clement.

Section 1 supplies first some basic knowledge about non-commutative formal
power series and then some preparatory definitions and formulas for Theorems
4.1 and 4.2. In Section 2, the iterated integration of paths is dmncd al\d in
Section 3, its geometric applications are indicated. Section 4 contains the
proot of the generalized Baker-Hausdorl formala which is frther extended, in
Section 5, o the case where the affine space R™ is replaced by a differentiable
mainfold. For those who are only interested in the eometic apect of this paper,
Sections 2 and 3 may be easily read without Sectio
is a continuntion o the author's work i [Chen, (3)] and is some-
what related to the paper [Chen, (2)) 12 is essentially
HausdorfP’s, in which Lemma 1.1 is implicitly used. Its proof, not an obvious one,
is furnished in this paper. Though borrowing some of Hausdorff’s technique,
Theorem 4.2 is proved in a simpler way and offers a stronger result than the
‘Baker-Hausdorff formula.

163

“This conent downloadd from 134.157.146,115 on i, 12 1 2019 13.08:32 UTC.
Al use suyectto s labout jsor. xgherms.
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Lyons' extension to rough paths.
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A brief history

DeepWriterID: An End-to-end Online Text-independent
Writer Identification System

Weiin Yang, Lianwen Jin', Manfei Liu
Colleg of lectonic and Inforation Engnering, S China Unieriyof Technology Guangao, China
1290@163.com, *lianwen.jin@gmail.com

o Orng o e g ot of ek okl

terminal en-based interfac
aentitenton untms are .nmn
personal authentic

e
I forensics. However, most

the ey of das and the ey o dosiain good g
features
2 deep comroltional nenral network (CNN) o addres thse Data Preprocessing
feature of J— [Rm—
Y Droma N BT aTeA T et WY
sulfcient feature representation, we further introduce path-
St faire maps 1 mprove perormance, Exprtent i re

the NLPR
‘we only use pen-position informatio
ghen banduritng samples, we achieved

TSR T3 or st amd SRE1%% fo

b pendown st ofthe

Machine learning applications are .

eywords—Online _text-independent writer _identification;
e et B T
signature feature maps.

1. INTRODUCTION

Wiier idnificaion s 8 sk of deteminiog o s

candidat 1 sccoding o the degre of sl btween
i handoritne and a smple of anknown authonhp (1)
Comently, it i popular oving to the development nd
commercialization of touchscreen o pen-cnabled electronic
devices such as smartphones, and tablet PCs. Iis e range of

perring mobile ok nsactions, snd sbenicaing s
o networks. Since most of these applications are

lated
1o-1he putposs of aoing personl and propey socuriys
handuriting identification merits more attention from academia
and industry

Identifying the handwriting of a writer is one of the highly

challenging problems in the fields of artifcial intelligence and

Jatten ecogniton. Conventionall, handwrting ientificaion

systemsfollow asequence of data acquisition, data

preprocessing, featureextraction, and _classification (2],

Rescarch into handuwriting identification has been focused on
fie

are considered more general but liarder 10 idenify, as they 1 Histionof Dy or el g
contain merely scanned image information. In contrast, ystems

e idnt
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Mathematical setting

e A path X :[0,1] — R9. Notation: X;.
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Mathematical setting

e A path X :[0,1] — R9. Notation: X;.
o Assumption: || X||1var < oo.

e Example: X; = (X}, X?) = (cost,sint), t € [0,1].
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Path integral

e X :[0,1] — R path of bounded variation.
e Y :[0,1] = R a continuous path.
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Path integral

e X :[0,1] — R path of bounded variation.
e Y :[0,1] = R a continuous path.

e Riemann-Stieljes integral of Y against X

1
/ YedX;
0

is well-defined.
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Path integral

e X :[0,1] — R path of bounded variation.
e Y :[0,1] = R a continuous path.

e Riemann-Stieljes integral of Y against X
1
/ YidX;
0

e Example: X; continuously differentiable:

1 1
/ Y, dX; = / Y, X, dt
0 0

is well-defined.
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Path integral

e X :[0,1] — R path of bounded variation.
e Y :[0,1] = R a continuous path.

e Riemann-Stieljes integral of Y against X

1
/ Y dX;
0
e Example: Yy =1 forall t € [0,1]:

1 1
/ Ytht = / dXt = X]_ - X().
0 0

is well-defined.
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).

18



Iterated integrals
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e Forie{l,...,d},

S'(X).q :/0 ths’ =X/ - X,
<s<
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
e Forie{l,...,d},

S'(X).q :/ dX, =X/ — X, — a path!
0<s<t
e For (i,j) €{1,...,d}?

SH(X)o. = / S'(X)psdXi = / dX; dX]

0<s<t JO<r<s<t
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
e Forie{l,...,d},

S'(X).q :/ dX, =X/ — X, — a path!
0<s<t
e For (i,j) €{1,...,d}?

SU0a= [ SWeadXi= [ dqaxd - apathl

0<s<t JO<r<s<t
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
e Forie{l,...,d},

S'Xp.g = / dX, =X/ — X, — a path!
0<s<t
e For (i,j) €{1,...,d}?,
SY(X)p,q = / S'(X)po,gdXs = / dX/dX! — a path!
' 0<s<t Jo<r<s<t
e Recursively, for (i1, ...,ik) € {1,...,d},
Sl (X0 4 = / dXir. .. dxk.

0<ti<bh< <t <t
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
Forie{1,...,d},

S'Xp.g = /0 dX, =X/ — X, — a path!
<s<t

For (i,j) € {1,...,d}?,

S (X0 = /

0<s<t

S'(X)po,gdXs = / dX!dX! — a path!

0<r<s<t

Recursively, for (i1, ...,ik) € {1,...,d}¥,
Sl (X0 4 = / dXir. .. dxk.
0<ti<bh< <t <t

o Sli-i)(X)q 7 is the k-fold iterated integral of X along iy, ..., ik.
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Definition
The signature of X is the sequence of real numbers

S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).
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Definition
The signature of X is the sequence of real numbers

S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).

e d=3—(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,...)

e [ensor notation:

Xi= Y st (X)e, @ w0,

e Signature:

where
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For X, = (X{, X2), -
2 | 2 _ X
X< (faxt fraxt) = (X -x X7 —x5)
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For X, = (X}, X?),
1 vl 1 y2) — 1 1 2 2
X< (faxt fraxt) = (X -x X7 —x5)

X2 — foi fot dXs1 dth foi foz dXs1 dXE)
- t 2 2 D)
Jo Jo dXgdX: [y [ dXidX;

20



For X; = (X}, X?),
X! — (f01 dx; foldxt) _ (Xl - X5 X —Xo)

X2 — foi foz dXs dXt foi foi dXs dXt
fo fo dX; dX; fo fo dX; dX;

Rank 0: |:| Rank 1: |:H:H:“:H:|

(scalar) (vector)

Rank 2: (matrix) Rank 3:

N
i

20



Truncated signature

e Truncated signature at order m:

S™(X) = (1, XL, X2, ..., X™).
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Truncated signature

e Truncated signature at order m:
SM(X) = (1, X1, X2,..., X™).

e Dimension:

Z i d"’“ 1

21



Geometric interpretation

X2

51.2(x)
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Important example

Linear path
e X :[0,1] — RY a linear path.
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Linear path
e X :[0,1] — RY a linear path.
o X; = Xy + Xit.
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Important example

Linear path
e X :[0,1] — RY a linear path.
o X; = Xy + Xit.

e Forany I = (i1,..., i),

k
1 j
-j=1
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Important example

Linear path
e X :[0,1] — RY a linear path.

o X; = Xy + Xit.
e Forany I = (i1,..., i),
sI(X)= = f[x"f
k! L
j=1
> Very useful: in practice, we always deal with piecewise linear paths.

> Needed: concatenation operations.

23



Invariance under time reparametrization

e X:[0,1] — R a path.
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Invariance under time reparametrization
e X:[0,1] — R a path.

e ¢ :[0,1] — [0,1] a reparametrization
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Invariance under time reparametrization
e X:[0,1] — R a path.
e ¢ :[0,1] — [0,1] a reparametrization

o If X; = Xy(s), then
S(X) = S(X).
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Invariance under time reparametrization
X :[0,1] — R a path.

¥ : [0,1] — [0, 1] a reparametrization
If X; = Xy(r), then

S(X) = S(X).

> A key advantage of the signature modeling.

> Encoding of the geometric properties of paths.

24



Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
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Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
e XY :[ac]— RY the concatenation.

e Then
S(X*xY)=5(X)®S(Y).
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Chen’s identity

X :[a,b] = R? and Y : [b,c] — RY paths.
X *Y :[a,c] = R9 the concatenation.
Then

S(X * Y) = S(X)® S(Y).

> We can compute the signature of piecewise linear paths!
> Data stream of p points and truncation at m: O(pd™) operations.

> Super fast packages and libraries available in C++ and Python.

25



Uniqueness results

e Chen (1958): piecewise regular paths.
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Uniqueness results

e Chen (1958): piecewise regular paths.
e Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and 'Y run
backwards’ is a Lipschitz tree-like path.

e Boedihardjo et al. (2016): extension to weakly geometric
rough paths.
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Uniqueness results

Chen (1958): piecewise regular paths.

Hambly and Lyons (2010) : paths of bounded variation.

S(X) = S(Y) if and only if the concatenation of X and 'Y run
backwards’ is a Lipschitz tree-like path.

Boedihardjo et al. (2016): extension to weakly geometric
rough paths.

> The signature characterizes paths.

> Tools from hyperbolic geometry, Lie groups...

26



Uniqueness
If X has at least one monotonous coordinate, then S(X) determines X

uniquely.
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Uniqueness
If X has at least one monotonous coordinate, then S(X) determines X

uniquely.

> Trick: add a dummy monotonous component to X.

> Important concept of embedding.

27



Can we reconstruct the path from its signature ?

e Currently a lot of work in this direction.
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Can we reconstruct the path from its signature ?
e Currently a lot of work in this direction.

e A simple procedure has been derived for piecewise linear paths by
Lyons and Xu (2017)
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Can we reconstruct the path from its signature ?

e Currently a lot of work in this direction.
e A simple procedure has been derived for piecewise linear paths by

Lyons and Xu (2017)

> Applications in signal processing, e.g., sound compression.

28



Signature approximation

e D compact subset of paths from [0,1] to R¢.
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Signature approximation
e D compact subset of paths from [0,1] to R¢.
e f: D — R continuous.

e Then, for every € > 0, there exists w € T(Rd) such that, for any

X eD,
|F(X) = (w,S(X))| <e.
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Signature approximation

e D compact subset of paths from [0,1] to R¢.
e f: D — R continuous.

e Then, for every € > 0, there exists w € T(Rd) such that, for any
X eD,
|F(X) = (w, S(X))| <e.

v

Signature and linear model are happy together!

> This raises many interesting statistical issues.
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Exponential decay of signature coefficients

e X :[0,1] — RY a path.
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Exponential decay of signature coefficients
e X :[0,1] — RY a path.
e Then, forany k >0, I C {1,...d}*,

XI5 var

|S'(X)] < ==
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Exponential decay of signature coefficients
e X :[0,1] — RY a path.
e Then, forany k >0, I C {1,...d}*,

XI5 var

|0 < ==

> Useful for approximation properties.

30



Learning with signatures



Parametric supervised machine learning

e Goal: Understand the relationship between an input X € X and an
output Y € ), typically written as

Y =f(X) +e.
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Parametric supervised machine learning

e Goal: Understand the relationship between an input X € X and an
output Y € ), typically written as

Y =f(X) +e.

e Data: (x1,y1)s--+, (Xn,yn) € X x YV iiid.
e Prediction function: fy &~ f, parameterized by 6 € RP.

yi=1 =1 y3=2 ya =3 v5 =2

31



Parametric supervised machine learning

e Loss function £: )Y x Y — RT.
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Parametric supervised machine learning

e Loss function £: )Y x Y — RT.

e Empirical risk minimization: choose

6= argmin1 Zf(y,-, fo(xi)).
i=1

fere N “—
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Parametric supervised machine learning

e Loss function £: )Y x Y — RT.

e Empirical risk minimization: choose

6= argmin1 Zf(y,-, fo(xi)).
i=1

fere N “—

Least squares regression
e Y =RP, Y=R.
e fy(x) = 07 x for any x € RP.
e Quadratic loss £(y, fa(x)) = (y — fo(x))?

32



Feedforward neural network

fo(x) = o(TLp(Te-1p(.. . p(T1x))))

F
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=
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Feedforward neural network

fo(x) = o(TLp(Te-1p(.. . p(T1x))))

e [ layers.
W 6 W, Cp) Wy P W,
=000
¥ RO O o 0O @
e -t o=
O O
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Feedforward neural network

fo(x) = o(TLp(Te-1p(.. . p(T1x))))

e [ layers.
e p: R — R activation function (e.g., ReLu p(x) = max(x, 0)).

W 6 W, Cp) Wy P W,
=000
e =009 (@) fo
OF O O O
O O
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Feedforward neural network

fo(x) = o(TLp(Te-1p(.. . p(T1x))))

e [ layers.

e p: R — R activation function (e.g., ReLu p(x) = max(x, 0)).

e T, affine linear transformation between layers:
Tix=Wx+b, I=1..., L

Wz W] P W4

~—0)
e —0 (o) f
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Feedforward neural network

fo(x) = o(TLp(Te-1p(.. . p(T1x))))

L layers.

p: R — R activation function (e.g., ReLu p(x) = max(x, 0)).

T, affine linear transformation between layers:
Tix=Wx+b, I=1..., L
o output function.

Wi W, W P A

~—)
=350 ON/S
O

elelele
QOOOO™
GO0

-
Il
-
Il
[
—
Il
w
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ture + learning algorithm

Dense network

Ty — ;

~{ & ( - (

AT /) &

O\ \, T RN 8
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\ ’\\_< ) IR X

d ~ X

X
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ure + learning algorithm

Dense network

e =

7 \ ) a
O\ o .
7""\»/ 1{/ \ e Sm(X)[o,l] I fi 2 . o ——> «Flower»
AN {
§

B
C N
< Ny

> Yang et al. (2017): skeleton-based human action recognition.
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ure + learning algorithm

Dense network

{ J—
A ~ /) !
¢ 7\ \“ R X
7-2‘\;&{/;/&/ > ) (X)[(] > O ——> «Flower»
) \ | y
3

> Yang et al. (2017): skeleton-based human action recognition.

> Sequence of positions of human joints
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ure + learning algorithm

Dense network

{ J—
A ~ /) !
¢ 7\ \“ R X
7-2‘\;&{/;/&/ > ) (X)[(] > O ——> «Flower»
) \ | y
3

> Yang et al. (2017): skeleton-based human action recognition.

> Sequence of positions of human joints — high dimensional signature
coefficients
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ure + learning algorithm

Dense network

4 o
A y /) !
LV =< m :
AU s 00— o s <Fowers
. :
3

> Yang et al. (2017): skeleton-based human action recognition.

> Sequence of positions of human joints — high dimensional signature
coefficients — small dense network
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ure + learning algorithm

Dense network

—{ T
A y /) .
LV, = m )
T\ /’i/ ) —> "Xy —> O ——> «Flower»
Wt )
3

> Yang et al. (2017): skeleton-based human action recognition.

> Sequence of positions of human joints — high dimensional signature
coefficients — small dense network — prediction.
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Temporal approaches

e |dea: construct a path of signature coefficients.
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e |dea: construct a path of signature coefficients.
e Procedure:
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e |dea: construct a path of signature coefficients.
e Procedure:

1. Divide the time interval into a partition
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Temporal approaches

e |dea: construct a path of signature coefficients.
e Procedure:
1. Divide the time interval into a partition
0<29< o< j2r9< .. < L.

2. Compute the signature on each interval [j279; (j + 1)279].
3. The signature sequence S is the input of a recurrent network.

— | $"(X)

— | "),

| S

> Lai et al. (2017) and Liu et al. (2017): writer recognition.
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Recurrent neural network

— A neural network for sequences.
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Image approaches

e |dea: create images of signature coefficients.
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e Procedure:

1. Consider that the input path is a trajectory in R2.

2. Map this path into an image by forgetting time.

3. Create one image for each signature coefficient:

Convolutional neural network

8100 5001 — > Flower»

Wﬁ— %

4. This yields 2™ — 1 sparse gray pictures.
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e Procedure:
1. Consider that the input path is a trajectory in R2.
2. Map this path into an image by forgetting time.
3. Create one image for each signature coefficient:

Convolutional neural network

.. ) sm. 48] ' F— T — > <Flower»

4. This yields 2™ — 1 sparse gray pictures.

> Graham (2013) and Yang et al. (2016): character recognition.
37



Image approaches
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e Procedure:
1. Consider that the input path is a trajectory in R2.
2. Map this path into an image by forgetting time.
3. Create one image for each signature coefficient:

Convolutional neural network
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4. This yields 2™ — 1 sparse gray pictures.

> Graham (2013) and Yang et al. (2016): character recognition.
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Construction of one signature image

e Procedure:
1. Consider a window of size 25 + 1 centered at t;.
2. Compute the signature coefficient over [t; — J; t; + 0].
3. Store the value obtained as gray level at the pixel corresponding to t;.
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e Procedure:

1.
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2. Compute the signature coefficient over [t; — J; t; + 0].
3.
4. Move the window to the next point and iterate.

Store the value obtained as gray level at the pixel corresponding to t;.

— X0

@ - SI(X) 15=0,15+0

38



Convolutional neural networks

— A neural network for images.
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Data — Continuous path — Signature — Algorithm.

40



Data — Continuous path — Signature — Algorithm.

e How should we choose the order of truncation?

e Which path embedding should we use?

40



Truncation order



Least squares linear regression

Linear model between x = (x!,...,xP) € R® and y € R:

y =P80+ Bix' + 4 BpxP +e, &~ N(0,0%).

0 50 100 150 200 250 300

Goal: given i.i.d. data (x1,y1),- .., (Xn, ya), find /3 that minimizes the em-

pirical risk
n

Ra(B) =D (i — BT x)".

i=1 41



Regression model on the signature

e X :[0,1] — R a path.
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Regression model on the signature

e X :[0,1] — R a path.
e Assumption: there exists m* € IN, 8* € R%("") such that

Y =(6,5" (X)) +e,

where
E(s|X)=0 and Var(g|X) =02 < .
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Regression model on the signature

e X :[0,1] — R a path.
e Assumption: there exists m* € IN, 8* € R%("") such that

Y =(6,5" (X)) +e,

where
E(s|X)=0 and Var(g|X) =02 < .

e Goal: estimate $* and m™.

42



Estimation of m*

e Data: ()(17 Yl), Sang (X,,, Yn) i.i.d.
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Estimation of m*

Data: ()(17 Yl), Sang (X,,, Yn) i.i.d.
For any kK € IN, a > 0,

Bio = {B € R¥M . ||l < a}.

e Forany 3 € By q,

For any k € IN,
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Estimator:

m= inf(argpin([,,(k) +* penn(k))).

Additional assumptions:

(Ho) There exists Ky > 0 such that almost surely | Y| < Ky.
(H1) There exists Kx > 0 such that almost surely || X]|1.var < Kx.

a4



Theorem
Let 0 < p < % and

pen, (k) = Kpent P/ dk+1 — 1,

where Kpen > 0 is a constant. Then, under (Hp) and (H,), for all n large
enough,
P(m # m*) < Crexp(—n'"2 ).
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Theorem
Let 0 < p < % and

pen, (k) = Kpent P/ dk+1 — 1,

where Kpen > 0 is a constant. Then, under (Hp) and (H,), for all n large
enough,
P(m # m*) < Crexp(—n'"2 ).

Corollary
m converges almost surely towards m*.
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Path embeddings



Embedding
A way of mapping discrete sequential data into a continuous path.
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Kaggle prediction competition

Google Al - 1,316 teams - 4 months ago

Data Kernels Discussion Leaderboard Rules Team My Submissions

Overview
"Quick, Draw!" was released as an experimental game to et dose 15 think bee leoke 1iker
Evaluation educate the public in a playful way about how Al works. It Learned by laoking at these examples dram by other peole
The game prompts users to draw an image depicting a
Prizes certain category, such as "banana,” “table,” etc. The game
generated more than 1B drawings, of which a subset was
Timeline

publicly released as the basis for this competition’s
training set. That subset contains 50M drawings
encompassing 340 label categories.

Sounds fun, right? Here's the challenge: since the training
data comes from the game itself, drawings can be
incomplete or may not match the label. You'll need to
build a recognizer that can effectively learn from this
noisy data and perform well on a manually-labeled test
set from a different distribution.

#|de || &
& e\ B
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Different embeddings

Original data
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Different embeddings

stroke 1 (X117Y11)a---7(X;17)/,§1)
(X12aYI2)7 0 0 .7(X32,y,§2)

stroke K (Xf,yf),...,(xlif{,y;f{)

Original data
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Different embeddings

Original data Raw path



Different embeddings

—

Original data Time path



Different embeddings

=

Original data Stroke path
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Embedding of path

Stroke path, version 2

Original data
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Embedding of path

BN W oa 0o o

Stroke path, version 3

Original data
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Embedding of path

t— (X7, X2, t, X7, X{'), where

: 0 ift <t
X; = L :
Xi_;, otherwise

{0 ift<t

. .
Xi_ . otherwise.

Original data



Embedding of path

- X
-~ Xuwithlag 1

~= Xuwithlag 2

Original data lLead-lag transformation
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Quick, Draw! dataset results

40

Path embedding

—# Raw path

30

—+ Time path

—+- Lead lag path
<+ Stroke path 1
-+ Stroke path 2
+ Stroke path 3

Accuracy

5 10 15
Log number of features

Prediction accuracy with a linear NN
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Quick, Draw! dataset results

-

Accuracy

-
-
-
-
-

Log number of features

Prediction accuracy with Random Forests

Path embedding

Raw path
Time path

Lead lag path
Stroke path 1
Stroke path 2
Stroke path 3
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Quick, Draw! dataset results

20

Path embedding
—*— Raw path
~+- Time path
-+~ Lead lag path
+ Stroke path 1
- Stroke path 2
= Stroke path 3

Log number of features

Prediction accuracy with 5 nearest neighbors
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Quick, Draw! dataset results

30

Path embedding
—*— Raw path
~+- Time path
-+~ Lead lag path
+ Stroke path 1
- Stroke path 2
Stroke path 3

Log number of features

Prediction accuracy with XGBoost
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Urban Sound dataset

10 different sounds: car horn, street music, dork barking...
5435 noisy 1-dimensional times series of average size 171135
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Urban Sound dataset results

60

20

5 10
Log number of features

Prediction accuracy with a linear NN
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Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope
sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934
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Motion Sense dataset

Smartphone sensory data recorded by accelerometer and gyroscope
sensors

Goal: detect 6 activities (walking upstairs, jogging, sitting...)
74800 12-dimensional times series of average size 3934

standing

jogging

ikt e it sttt b bstiedba ) (3 bkl bbbl sl 1)

iy A qli LI
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Motion Sense dataset results

100

80

Accuracy

60

40

6 a 12 15
Log number of features

Prediction accuracy with XGBoost
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Take-home message

> Striking fact: some embeddings seem consistently better.
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Take-home message

> Striking fact: some embeddings seem consistently better.
> Good performance of the lead lag path.

> This is due to intrinsic properties of the signature and the
embedding, not to domain-specific properties.

> It is particularly remarkable as the dimension of the input stream is
different from one dataset to another.

> Conclusion: the lead lag embedding seems to be the best choice,
regardless of the data and algorithm used.

> Computationally cheap and drastically improves prediction accuracy.
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Performance of signatures



e For each dataset: lead lag + lag selection.

Quick, Draw!

Motion Sense

Urban Sound
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e For each dataset: lead lag + lag selection.

Quick, Draw! Motion Sense Urban Sound

e Quick, Draw! and Motion Sense: 1. Urban Sound: 5.

e Quick, Draw!: dense NN with two hidden layers and Relu activation
(1 523 200 samples for training and 76 160 for validation and test).

e Urban Sound and Motion Sense: Random Forests.
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Performance of si

e Quick, Draw!
> State of the art: deep CNN trained with several million of samples.
> Kaggle top 3 accuracy = 95%.
> Our result: small NN + signature features at order 6 = 73%.

e Urban Sound
> State of the art: feature extraction with mixture of experts models.
> Accuracy = 77.36%.
> Our result: Random Forests + signature features at order 5 = 66.8%.
e Motion Sense

> State of the art: deep NN + autoencoders 4+ multi-objective loss.
> F1 score = 92.91.
> Our result: Random Forests + signature features at order 3: 91.
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Conclusion

Our algorithms have not been tuned to a specific application.

e However, they achieve results close to state-of-the-art.

They require less computing resources and no domain-specific
knowledge.

A lot of open questions

> Theoretical results on the lead lag path.

> Sparsity in signatures.

> Extension to paths of finite p-variation for p > 2
>
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Thank you!
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Images taken from

e "“An Introduction to Statistical Learning, with applications in R”
(Springer, 2013) with permission from the authors: G. James, D.
Witten, T. Hastie and R. Tibshirani.

e “Hands-On Natural Language Processing with Python" by

Rajalingappaa Shanmugamani, Rajesh Arumugam

e https://towardsdatascience.com “A Comprehensive Guide to
Convolutional Neural Networks — the ELI5 way"
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