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Learning from a data stream.

We are interested in predicting from a data stream, for example:

I Time series prediction,

I Online recognition of characters or handwriting,

I Sound recognition,

I Automated medical diagnosis from sensor data,

...

In all of these cases, the predictor can be seen as a path
X : [a, b]→ Rd .
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Google ”Quick, Draw!” dataset

→ 50 million drawings, 430 classes.
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Motion Sense dataset

→ Smartphone sensory data: time series in R12. 300 samples, 6
classes.
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How can we represent such data?

(a) Sample from the class ”flower”.

(b) x and y coordinates.
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(a) Time reversed x and y
coordinates.

(b) x and y coordinates of the flower
drawn at a different speed.

(c) Another sample from the class
”flower”.

(d) x and y coordinates of the second
flower drawing.
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The signature will overcome some of these problems:

I It is a transformation from a path to a sequence of
coefficients of unique length, regardless of the length of the
initial time sequence.

I Independent of time parametrization.

I Encodes geometric properties of the path.

I Unique (under some assumptions).

Origin of signature ? Chen in the 60s, then Lyons’ rough paths
theory in the 90s.
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Setting

I X is a continuous path X : [0, 1]→ Rd .

I ‖X‖1-var is its total variation, assumed to be finite.

I One can then define the Riemann-Stieljes integral
∫ 1

0 YtdXt ,
where Y is a continuous path.

If X is differentiable, it is just
∫ 1

0 YtdXt =
∫ 1

0 YtẊtdt.
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First terms of the signature

Let d = 2, and Xt = (X 1
t ,X

2
t ), thenS (1)(X )

S (2)(X )

 =

∫ 1
0 dX 1

t∫ 1
0 dX 2

t

 =

∫ 1

0
dXt ,

S (1,1)(X ) S (1,2)(X )

S (2,1)(X ) S (2,2)(X )

 =


∫∫

0≤s<t≤1

dX 1
s dX

1
t

∫∫
0≤s<t≤1

dX 1
s dX

2
t∫∫

0≤s<t≤1

dX 2
s dX

1
t

∫∫
0≤s<t≤1

dX 2
s dX

2
t



=

∫∫
0≤s<t≤1

dXs ⊗ dXt .
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First terms of the signature

S (1,1,1) S (1,2,1)

S (2,1,1) S (2,2,1)

S (1,1,2) S (1,2,2)

S (2,1,2) S (2,2,2)

=

∫∫
0≤s<t<u≤1

dXs ⊗ dXt ⊗ dXu.

For example,

S (1,2,2) =

∫∫
0≤s<t<u≤1

dX 1
s dX

2
t dX

2
u .
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Geometric interpretation

The signature contains geometric properties of the path.
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Signature of a path

Definition

Let X : [0, 1]→ Rd be a path of bounded variation and
I = (i1, . . . , ik) ⊂ {1, . . . , d}k be a multi index. The signature
coefficient corresponding to I is

S (i1,...,ik )(X ) =

∫
· · ·
∫

0≤u1<···<uk≤1

dX i1
u1
. . . dX ik

uk
.
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Signature of a path

Definition

The signature of X is the vector containing all signature
coefficients:

S(X ) =
(

1, S (1)(X ), . . . ,S (d)(X ),S (1,1)(X ),S (1,2)(X ),

. . . ,S (d ,d)(X ), . . . ,S (i1,...,ik )(X ), . . .
)
.

The signature of X truncated at order m is:

Sm(X ) =
(

1,S (1)(X ), S (2)(X ), . . . ,S

m︷ ︸︸ ︷
(d , . . . , d)(X )

)
.

Its dimension is
∑m

k=0 d
k = dm+1−1

d−1 .
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Example

Example (Linear path)

If X : [0, 1]→ Rd is a linear path, i.e., Xt = X0 + (X1 − X0)t for
t ∈ [0, 1], then for any I = (i1, · · · , ik) ∈ {1, · · · , d}k ,

S (i1,...,ik )(X ) =
1

k!

k∏
j=1

(X1 − X0)ij .
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Properties (1)

Proposition (Invariance under time reparametrization)

Let X : [0, 1]→ Rd be a path and ψ : [0, 1]→ [0, 1] a
reparametrization. Then, if X̃t = Xψ(t),

S(X̃ ) = S(X ).

Proposition (Uniqueness)

If X has at least one monotonous coordinate, then S(X )
determines X uniquely.
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Properties (2)

Proposition (Signature approximation)

Let D be a compact subset of the space of paths from [0, 1] to Rd

of bounded variation. Let f : D → R continuous. Then, for every
ε > 0, there exists N ∈ N, w ∈ RN such that, for any X ∈ D,

|f (X )− 〈w , S(X )〉| ≤ ε.
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Properties (3)

Proposition (Exponential decay of signature coefficients)

Let X : [0, 1]→ Rd be a path of bounded variation. Then, for any
k ≥ 0, I ⊂ {1, . . . d}k ,

∣∣S I (X )
∣∣ ≤ ‖X‖k1−var

k!
.
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Procedure
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Kaggle prediction competition
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Data embedding as a path

(a) 2-dimensional path.

(b) 3-dimensional ”stroke path”.

(c) 3-dimensional ”time path”. (d) Lead-lag transformation.
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Results: Quick, Draw! dataset

Figure: Prediction accuracy on the ”Quick, Draw!” dataset with a linear
neural network with one hidden layer.
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Results: Motion sense dataset

Figure: Prediction accuracy on the ”Motions Sense” dataset with a linear
neural network with one hidden layer.
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Results: XGBoost algorithm

Figure: Prediction accuracy on the ”Motions Sense” dataset with
XGBoost algorithm.



29/31

Linear regression on the signature

Model: Let (Xt)t∈[0,1] be a stochastic process of bounded

variation. We assume that there exists m∗ ∈ N, β∗ ∈ Rsd (m∗) such
that

Y = 〈β∗,Sm∗
(X )〉+ ε,

where
E[ε|X ] = 0 and Var(ε|X ) = σ2 <∞.

Goal: Estimate β∗ and m∗.
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Conclusion

I The signature is a generic method that can be used for
multidimensional sequential data.

I It encodes, in a fixed number of coefficients, geometric
properties of the input path and it linearizes complex
functions of the path.

I Data embedding has a huge influence on prediction
performance.

I Further work:
• Theoretical investigation of embedding properties.
• Truncation order selection in regression models.
• Extension to highly oscillatory paths.
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Thank you for your attention. Questions?
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