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Abstract

In this thesis, we introduce the notion of signature of a path as feature set in a statis-
tical learning framework. The signature dates back from the 60s when Chen noticed
in [4] that a path can be represented by its iterated integrals and it has been at the
centre of Lyons’ rough paths theory in the 90s. The signature encodes geometric
properties of a multidimensional path: it can be viewed as a non-parametric dimen-
sion reduction technique. Moreover, a lot of real-world data can be represented
as a path evolving with time, think for example of handwriting recognition from
character trajectories, market prediction from financial time series, analysis of med-
ical sensors... The signature transformation combined with a learning algorithm
has achieved state of the art results for several of these applications, see, e.g., [34].
This justifies the need of statistical investigation of the signature properties. In the
following, we review the theory of signature and we investigate its applications in
statistical learning. We look more closely at the signature transformation in a re-
gression framework, as presented in [21], and derive a convergence rate. In light of
promising results in the literature, we undertake some empirical tests on the signa-
ture transformation and its performance compared to other classical algorithms.
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Chapter 1

Introduction

1.1 The problem

Given the ubiquity of time series data and the increase in storage capacity, there has
been a lot of interest in statistical methods for functional data. To name only a few,
market evolution in finance, electrocardiograms or gait evolution in medicine, meteoro-
logical records, geo-tracking of people or cars, are all functional data. One may want
to classify or cluster them into different categories (for example discriminate between a
normal or diseased medical record) or to predict future values from the ones observed
until now (weather or financial stocks prediction). For this, traditional methods, which
deal with a finite number of features, need to be extended. The main difficulty lays in
the high dimensional nature of these data. A lot of focus has thus lied in finding good
representations or good similarity measures between two data streams. Note that the
problem of dealing with functional object appeared in different scientific communities
who thus have a different vocabulary. We will talk indistinguishably of functional data,
data stream or time series. What we mean by these terms is that we want to learn from
a function X : [0, 1]→ Rd an output Y which can be either numerical or discrete.

To reduce the dimension of data streams, traditional methods often require strong as-
sumptions on their functional nature or on the underlying probabilistic models. We
want to investigate here what is called the signature method, which requires no strong
assumption on the functional data and can be used in a fully non-parametric statistical
model. This method treats data streams as paths and represents them on a small num-
ber of coefficients who encapsulate their geometric properties.

More precisely, the signature of a path is an infinite series consisting of its iterated in-
tegrals. Iterated integrals have been introduced in the seminal work [4] of Chen in the
middle of the 60s. The notion has been rediscovered in the 90s with Lyons’ theory of
rough paths. It has recently received the attention of the machine learning community
because of a series of successful applications. To cite some of them, [34] have achieved
state of the art results for handwriting recognition with a recurrent neural network
combined with signature features up to order 3, [12] has used the same approach for
characters recognition, [22] have used Lasso regression with signature features up to
order 4 for classification of financial data streams, [17] for detection of bipolar disorders
and [35] for human action recognition. For a more complete review of recent applica-
tions, we refer the reader to [6]. To our current knowledge, no systematic comparison of
predictive power of the signature transformation has been undertaken. It has also led
to some statistical articles, [24] in statistical inference for stochastic differential equation
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1. Introduction

and [16] who define a ”sequential kernel” based on the signature.

Let us now introduce the signature as a natural object when solving controlled differen-
tial equations (see [11] for a systematic treatment of this topic).

1.2 The origin of signature

The signature of a path naturally appears when looking at Picard’s iterations for con-
trolled ordinary differential equations of the form

dYt = g(Yt)dXt, Y0 = y0, (1.1)

with X : [0, 1] → E := Rd, Y : [0, 1] → F := Re, and g : F → L(E, F), L(E, F) being
the set of linear functionals from E to F (that one can identify with the set of e× d real
matrices). That Y solves equation (1.1) means that for all t ∈ [0, 1],

Yt = y0 +
∫ t

0
g(Ys)dXs.

One can obtain solutions by Picard iterations. Let, for any path Y : [0, 1]→ Rd,

F(Y)t = y0 +
∫ t

0
g(Ys)dXs.

Then, a solution of (1.1) is a fixed point of F and one can approach it by defining a
sequence of paths

Yk+1 = F(Yk),

with an arbitrary initial path Y0. Under suitable assumptions one can prove that Yk

converges to Y.

Let us look at a particular case when g is linear. In this case, we can rewrite g(Ys)dXs as
h(dXs)Ys with h : Rd → Re×e linear. We begin with the constant path Y0

t = y0 and we
define iteratively

Y1
t = y0 +

∫ t

0
h(dXs)Y0

s =

(
1 +

∫ t

0
h(dXs)

)
y0,

Y2
t = y0 +

∫ t

0
h(dXs)Y1

s =

(
1 +

∫ t

0
h(dXs) +

∫ t

0

∫ s

0
h(dXu)h(dXs)

)
y0.

Letting h⊗k(e1 ⊗ · · · ⊗ ek) = h(e1) · · · h(ek), we have, by linearity,

Y2
t =

(
1 + h

(∫ t

0
dXs

)
+ h⊗2

(∫ t

0

∫ s

0
dXu ⊗ dXs

))
y0,

and iterating we are left to
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1.3. Overview

Yk
t =

(
1 + h(

∫ t

0
dXs) + h⊗2(

∫ t

0

∫ s

0
dXu ⊗ dXs) + · · ·

+h⊗k

 ∫
· · ·

∫
0<u1<u2<···<uk<1

dXu1 ⊗ · · · ⊗ dXuk

 y0.

The expression
∫
· · ·
∫

0<u1<u2<···<uk<1
dXu1 ⊗ · · · ⊗ dXuk that appears is exactly the signature up

to order k of X. We see that it completely determines Yk. Taking the limit, the infinite
signature of X determines the solution Y. It has actually be shown that this also holds
for non-linear maps (see [4] and [14] for g Lipschitz).

1.3 Overview

The last section has shown that the signature characterizes solutions of differential equa-
tions driven by a certain path and is thus an interesting function of the path. We will
investigate this more deeply in this thesis. Chapter 2 provides a detailed exposition of
the signature and its properties. Chapter 3 reviews some of the standard statistical meth-
ods dealing with functional data and presents our model of interest. Finally, we present
some experimental results in chapter 4, which provide evidence for the potential of the
signature method in practical applications.
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Chapter 2

Signature : theoretical foundations

2.1 Preliminaries

Before defining formally the signature, we need to introduce some notions about bounded
variation paths and tensor spaces. In all the following, E is a Banach space of dimension
d equipped with a norm ‖.‖, usually identified with Rd.

2.1.1 Paths of bounded variation

Definition 2.1.1 (Path of bounded variation). Let X : [0, 1] → E be a continuous path.
The p-variation of X for p ≥ 1 is defined by

‖X‖p−var =

(
sup

D
∑

ti∈D
‖Xti − Xti−1‖p

)1/p

,

where the supremum is taken over all finite partitions

D = {(t0, . . . , tk)|k ≥ 0, 0 = t0 < t1 < · · · < tk−1 < tk = 1}

of [0, 1]. X is said to be of finite p-variation if its p-variation is finite.

We denote BVp(E) the set of continuous paths of finite p-variation with values in E.

If p = 1, we have

‖X‖1−var = sup
D

∑
ti∈D
‖Xti − Xti−1‖ = lim

|D|→∞
∑

ti∈D
‖Xti − Xti−1‖,

with |D| = k the length of the partition D = {0 = t0 < · · · < tk = 1}. Moreover, if X is
continuously differentiable, we have

‖X‖1−var =
∫ 1

0
‖X′(t)‖dt.

If ‖X‖1−var < ∞ we will also say that X is of bounded variation. Note that ‖.‖p−var is a
semi-norm (the p-variation of a constant path is null) and that we can define a norm on
BVp(E) by letting

‖X‖BVp(E) = ‖X‖p−var + sup
t∈[0,1]

‖Xt‖.

The norm ‖X‖BVp(E) is called the p-variation norm of X and ‖X‖p−var the p-variation of
X. It equips BVp(E) with a Banach structure, see [23].
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2. Signature : theoretical foundations

Proposition 2.1.1. (BVp(E), ‖.‖BVp(E)) is a Banach space.

Definition 2.1.2 (Riemann-Stieljes integral). Let X and Y be two functions from [a, b]→
Rd. Let Dn = {a = tn

i < · · · < tn
k = b} a partition of [a, b] such that its mesh ‖Dn‖ =

sup1≤i≤k |tn
i − tn

i−1| tends to 0 when n→ ∞ and (sn
i ) a sequence such that for all i and n,

sn
i ∈ [tn

i−1, tn
i ]. Then, if the sum

n

∑
i=1

Ysi(Xti − Xti−1)

converges to a limit I independent of the choice of (sn
i ) and Dn, we say that the Riemann-

Stieljes integral of Y against X exists, is equal to I and denote it
∫ b

a YtdXt =
∫ b

a Yd.

It can be shown that if Y is continuous and X of bounded variation, then the Riemann-
Stieljes integral

∫
YdX exists (see [33] for a proof). Young also proved in [36] that the

Riemann-Stieljes integral is well-defined if X has finite p-variation and Y has finite q-
variation with 1

p +
1
q > 1.

2.1.2 Tensor space

We now introduce some definitions and notations about the tensor algebra, which is the
space of the signature.

Definition 2.1.3 (Tensor product of vector spaces). Let E and F be two vector spaces
over a field K. A tensor product of E and F, denoted by E⊗ F, is a vector space over the
same field K with a bilinear map ϕ : E× F → E⊗ F such that for any basis e = (ei)i∈I
of E and f = ( f j)j∈J of F, then

ϕ(e× f ) = {ϕ(ei, f j)|ei ∈ e, f j ∈ f }

is a basis of E⊗ F. For any x ∈ E and y ∈ F, ϕ(x, y) is denoted x ⊗ y and called the
tensor product of x and y.

One can prove that such a product exists and is unique up to isomorphisms (see ap-
pendix A and [26] for more details).

The nth tensor power of a vector space E is defined as the order n tensor product of E
with itself:

E⊗n = E⊗ · · · ⊗ E︸ ︷︷ ︸
n

.

It is useful to identify E⊗n with the space of homogeneous non-commuting polynomials
of degree n. Indeed, let (e1, . . . , ed) be a basis of E, any element of E⊗n can be written as
a sum ∑

I=(i1,··· ,in)⊂{1,··· ,d}n
αIei1 ⊗ · · · ⊗ ein , which can be thought of as ∑ αI Xi1 . . . Xin where

X1, . . . , Xn are non commuting indeterminates.

Note that by construction dim(E ⊗ F)= dim(E) × dim(F) so that if E = Rd, E⊗n is of
dimension dn. Then, one can also identify E⊗n with Rdn

, which means that, for example,
E⊗2 can be identified with the space of d× d matrices.

Definition 2.1.4. We denote by T((E)) the space of formal series of tensors of E, i.e.,

T((E)) = {(a0, . . . , an, . . . ) | ∀n ≥ 0 an ∈ E⊗n},
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2.1. Preliminaries

and
TN(E) := ⊕N

k=0E⊗k

the truncated tensor space up to order N.

Definition 2.1.5. We endow T((E)) with the following operations : for a, b ∈ T((E)),
λ ∈ R,

a + b = (a0 + b0, a1 + b1, . . . , an + bn, . . .)

λ.a = (λa0, λa1, . . . , λan, . . .)

a⊗ b = (c0, c1, . . . , cn, . . .)

with

cn =
n

∑
k=0

ak ⊗ bn−k

We also define the projection operator of an infinite tensor object onto its first levels.

Definition 2.1.6. The canonical projection πN of an element of T((E)) on the truncated
tensor space TN(E) is defined by

T((E)) −→ TN(E)
πN : (a0, · · · , aN , aN+1, · · · ) 7−→ (a0, · · · , aN).

The following proposition is clear from the definitions.

Proposition 2.1.2. (T((E)),+, .,⊗) is a real non-commutative algebra with neutral element
1 := (1, 0, . . . , 0, . . .).

An element of T((E)) will be invertible if and only if a0 6= 0. Thus, the space T̃((E)) =
{a ∈ T((E))|π0(a) = 1} is a group.

Proposition 2.1.3. (T̃((E)),⊗) is a Lie group, and for all a ∈ T̃((E)),

a−1 = ∑
k≥0

(1− a)⊗k.

See appendix B for the definition of a Lie group.

Proof. Let N > 0 and let us look at the projection at order N of a⊗∑k≥0(1− a)⊗k. We
have

πN

(
a⊗ ∑

k≥0
(1− a)⊗k

)
= πN

(
a⊗

N

∑
k=0

(1− a)⊗k + a⊗ ∑
k≥N+1

(1− a)⊗k

)

= πN

(
a⊗

N

∑
k=0

(1− a)⊗k

)

because the second term contains only elements of order at least N + 1 (as π0(1− a) = 0).
Moreover,

a⊗
N

∑
k=0

(1− a)⊗k = (1− (1− a))⊗
N

∑
k=0

(1− a)⊗k

=
N

∑
k=0

(1− a)⊗k −
N

∑
k=0

(1− a)⊗k+1

= 1− (1− a)⊗N+1.
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2. Signature : theoretical foundations

Therefore,

πN(a⊗
N

∑
k=0

(1− a)⊗k) = 1.

This is true for any N and the same calculations can be done for ∑k≥0(1− a)⊗k ⊗ a. So

∑
k≥0

(1− a)⊗k ⊗ a = a⊗ ∑
k≥0

(1− a)⊗k = 1

T̃((E)) is an affine subspace of T((E)) so it is a smooth manifold. The operations ⊗ and
−1 are smooth maps (they are polynomials in the coordinates). We can conclude that
T̃((E)) is a Lie group.

As in [16] and [11], we endow the tensor space with the Euclidean scalar product and
associated norm.

Definition 2.1.7. Let a, b ∈ E⊗k, (ei)
d
i=1 an orthonormal basis of E. Then, if a =

∑I⊂{1,··· ,d}k aIei1 ⊗ · · · ⊗ eik , b = ∑I⊂{1,··· ,d}k bIei1 ⊗ · · · ⊗ eik , we have

〈a, b〉E⊗k = ∑
i1,··· ,ik∈{1,··· ,d}

ai1···ik bi1···ik

and
‖a‖E⊗k =

√
∑

i1,··· ,ik∈{1,··· ,d}
a2

i1···ik
.

Note that the norm satisfies the following property: for n ≥ 0, 0 ≤ k ≤ n, a ∈ E⊗k and
b ∈ E⊗n−k

‖a⊗ b‖E⊗n = ‖a‖E⊗k‖b‖E⊗n−k

It is thus and admissible norm (see Appendix A.2 for definition).

Definition 2.1.8. For v, w ∈ T((E)) we define

〈v, w〉T((E)) = ∑
k≥0
〈vk, wk〉E⊗k

Note that this ”scalar product” in T((E)) may be infinite.

2.2 Definition and first examples

Now that we have the necessary definitions on the tensor space, we can define the
signature as an element of T((E)) and provide some elementary examples.

2.2.1 Definition and notation

Definition 2.2.1. Let X : [0, 1] → E be a path of bounded variation. The signature of X
is defined as

S(X) = (1, X1, X2, · · · , Xn, · · · ) ∈ T((E)),

where, for each integer n,

Xn =
∫
· · ·

∫
0<u1<u2<···<un<1

dXu1 ⊗ · · · ⊗ dXun ∈ E⊗n.
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2.2. Definition and first examples

The integrals can be understood as Riemann-Stieljes integrals.

Example 2.2.1. If d = 2, Xt = (X1
t , X2

t ), E⊗n can be identified with R2n
and one can

compute the first two orders of the signature:

X1 =
∫ 1

0
dXt =

∫ 1
0 dX1

t∫ 1
0 dX2

t



X2 =
∫ 1

0

∫ t

0
dXs ⊗ dXt =

∫ 1
0

∫ t
0 dX1

s dX1
t
∫ 1

0

∫ t
0 dX1

s dX2
t∫ 1

0

∫ t
0 dX2

s dX1
t
∫ 1

0

∫ t
0 dX2

s dX2
t

 .

Notation. For every integer N ≥ 1, the truncated signature of order N is

SN(X) = (1, X1, X2, · · · , XN) = πN(S(X))

Remark. If X is of bounded p-variation with 1 < p < 2, then the signature is still well-
defined if the integrals are understood as Young integrals (see for instance [11]). If
p > 2, the iterated integrals are no longer uniquely defined. The theory of rough paths
generalize the Young integral in these cases. Thus, there exists a notion of signature
for highly oscillatory signals, which makes the signature transformation a very general
tool.

Notation. We introduce the following notation:

∆k = {(u1, · · · , uk) ∈ [0, 1]k|0 < u1 < · · · < uk < 1}.

For a multi-index I = (i1, · · · , ik) ∈ {1, · · · , d}k, its length is denoted by |I| = k and the
coefficient of Xk corresponding to this multi-index is

SI(X) =
∫
· · ·

∫
(u1,··· ,uk)∈∆k

dXi1
u1

. . . dXiN
uN

=
∫

u∈∆k

dX I
u.

We will sometimes consider the signature of a path restricted to a specific interval X :
[s, t]→ E and then denote its signature by S(X)[s,t].

The signature is an element of T((E)) and the truncated signature SN(X) is in TN(E).
If (ei)

d
i=1 is a basis of E, (ei1 ⊗ · · · ⊗ eiN )(i1,··· ,iN)∈{1,··· ,d}N is a basis of E⊗N . Then for

I = (i1, · · · , iN) we can also write the signature as

S(X) = 1 +
∞

∑
N=1

∑
|I|=N

SI(X)ei1 ⊗ · · · ⊗ eiN .

2.2.2 Geometric interpretation

We try to give here a geometric interpretation of the first orders of the signature. The
first order terms are just the increments of the path: for any s, t ∈ [0, 1],

X1
[s,t] = Xt − Xs

The second order terms are already a little more interesting. Indeed, by definition, the
Levy area of a curve (xt, yt) in the time interval [0, 1] is

A =
1
2

(∫ 1

0
xsdys −

∫ 1

0
ysdxs

)
.

11



2. Signature : theoretical foundations

Figure 2.1: Levy area

It is a signed are between the curve and the chord connecting the two endpoints (see
figure 2.1). We recognize the coefficients of the signature: if Ai,j is the Levy area of the

curve (Xi
t, X j

t), then

Ai,j =
1
2
(Si,j(X)− Sj,i(X).

We see that the signature encodes geometric properties of the paths formed by the
different pairs of coordinates of X.

2.2.3 Examples

We can now give some examples of paths for which we can directly compute the signa-
ture.

Example 2.2.2 (Linear path). If X : [0, 1]→ Rd is a linear path, i.e., Xt = X0 + (X1−X0)t
for t ∈ [0, 1], then for any I = (i1, · · · , ik) ∈ {1, · · · , d}k,

SI(X) =
∫
· · ·

∫
0<u1<u2<···<uk<1

dXi1
u1

. . . dXik
uk

=
∫
· · ·

∫
0<u1<u2<···<uk<1

(X1 − X0)
i1 · · · (X1 − X0)

ik du1 · · · duk

=
k

∏
j=1

(X1 − X0)
ij

∫
· · ·

∫
0<u1<u2<···<uk<1

du1 · · · duk

=
1
k!

k

∏
j=1

(X1 − X0)
ij .

Example 2.2.3 (Path in one dimension). In one dimension, the signature is directly re-
lated to the moments of X. Indeed, let X : [0, 1] → R be a one-dimensional path. Then,
for any k ≥ 0, Xk ∈ R, and

Xk =
∫
· · ·

∫
0<u1<u2<···<uk<1

dXu1 . . . dXuN =
1
k!
(X1 − X0)

k.

12



2.3. Properties of the signature

So, if (Ω,F , P) is a probability space and X is a time-continuous stochastic process such
that X is of bounded variation almost surely, the expected signature is

E[Xk
[0,t]] =

1
k!

E[(Xt − X0)
k].

Therefore, in one dimension, the signature only depends on its increment X1 − X0. We
will see in the next section that more interesting geometric interpretations appear for
multidimensional paths. Following [16], the signature coefficients can be thought of as
ordered moments of the paths.

2.3 Properties of the signature

2.3.1 First properties

The signature has a number of interesting properties, which will be useful for computa-
tions and statistical inference. We present here some of them with proofs, adapted from
[23]. The first property gives a method to compute the signature of a concatenation of
paths.

Definition 2.3.1. Let X : [s, t] → E and Y : [t, u] → E. We let the concatenation of paths
(see Figure 2.2) be defined as

(X ∗Y)v =

{
Xv if v ∈ [s, t]
Xt + Yv −Yt if v ∈ [t, u]

X Y X ∗Y

Figure 2.2: Concatenation of paths

Theorem 2.3.1 (Chen’s identity). Let X : [s, t] → E and Y : [t, u] → E be two continuous
paths with bounded variation. Then

S(X ∗Y)[s,u] = S(X)[s,t] ⊗ S(Y)[t,u].

Proof. Let Z = X ∗ Y : [s, u] → E and S(Z) its signature. We look at the order n term of

13



2. Signature : theoretical foundations

its signature:

Zn =
∫
· · ·

∫
s<u1<u2<···<un<u

dZu1 ⊗ · · · ⊗ dZun

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t<uk+1<···<un<u

dZu1 ⊗ · · · ⊗ dZun

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk ⊗
∫
· · ·

∫
t<uk+1<···<un<u

dYuk+1 ⊗ · · · ⊗ dYun

=
n

∑
k=0

Xk ⊗Yn−k,

where we used Fubini’s theorem. Therefore,

S(Z) = S(X)⊗ S(Y)

For paths of bounded p-variation with p ∈ (1, 2), one cannot use Fubini’s theorem but
one can prove that Chen’s identity is still valid (see [23]). An equivalent formulation
of Chen’s theorem is that the signature is a homomorphism from the monoid of paths
(BV(E), ∗) to the group (T̃((E)),⊗). We can now apply this formula to the signature of
a piecewise linear path.

Example 2.3.1. Let X : [0, 1] → Rd be a piecewise linear path. Let us assume that the
knots are 0 = t0 < t1 < · · · < tk = 1. Then, by Chen’s identity,

S(X) = S(X)[t0,t1] ⊗ · · · ⊗ S(X)[tk−1,tk ].

On each [tj−1, tj], X is a linear path so S(X)[tj−1,tj] can be obtained from example 2.2.2.

The next lemma show that the signature is independent of time parametrisation. It is
an immediate consequence from the definition.

Lemma 2.3.1 (Invariance under time reparametrisation). Let X : [a, b] → E be a path,
ψ : [a, b] → [a, b] be a reparametrisation (non decreasing surjection), and let X̃t = Xψ(t) for
t ∈ [a, b]. Then, for every s, t ∈ [a, b],

S(X̃)[s,t] = S(X)[ψ(s),ψ(t)].

Proof. This is the change of variable formula for Riemann-Stieljes integrals.

This also means that when we will use the signature as a feature for a learning task, one
will lose all information about the speed of the path. As we have seen in section 1.2, the
signature characterises solutions of a certain class of differential equations. Conversely,
the next lemma shows that the signature itself is a solution of a differential equation.
This result will prove extremely useful to derive other properties of the signature.

Lemma 2.3.2. Let X : [0, 1] → E of bounded variation, Y : [0, 1] → TN(E) Then the unique
solution of the controlled differential equation

dYt = πN(Yt ⊗ dXt), Y0 = (1, 0, · · · , 0)

is the signature of X truncated at order N i.e. the path from [0, 1] → TN(E) defined by t →
SN(X)[0,t].

14



2.3. Properties of the signature

Proof. Existence and uniqueness are a consequence of Theorem C.1.1, which is a version
of Picard’s theorem. We can check that the truncated signature is indeed a solution. We
have for the order k of the signature on [0, t]

Xk
[0,t] =

∫
· · ·

∫
0<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk

=
∫ t

0

 ∫
· · ·

∫
0<u1<···<uk−1<uk

dXu1 ⊗ · · · ⊗ dXuk−1

⊗ dXuk

=
∫ t

0
Xk−1

[0,u] ⊗ dXu.

Thus,

Sk(X)[0,t] = (1, X1, · · · , Xk) = 1 +
∫ t

0
πk(Sk−1(X)[0,u] ⊗ dXu).

Corollary 2.3.1. The truncated signature map πN ◦ S : BV(E) → TN(E) is continuous for
any N ≥ 0

Proof. This is an immediate consequence of the second part of Picard’s Theorem C.1.1.

For a path X of bounded p-variation, we know that its signature exists and that its first
term is 1. Then, it is invertible in T̃((E)). One can prove that its inverse is the signature
of the path obtained by running X backward in time.

Proposition 2.3.1 (Time-reversal). Let X : [0, 1] → E a path with bounded p-variation with
p < 2 and let

←−
X t its time-reversal :

←−
X t = X1−t for t ∈ [0, 1]. Then,

S(X)⊗ S(
←−
X ) = 1.

Proof. One can use lemma 2.3.2. Let Z = X ∗←−X . Then, for any Banach space V and any
map f : V → L(E, V), it is equivalent for a path Y : [0, 1]→ V to be solution of

dYt = f (Yt)dXt, Y0 = ξ, Y1 = η

or of
dYt = f (Yt)d

←−
X t, Y0 = η, Y1 = ξ.

So any solution of
dYt = f (Yt)dZt, Y0 = ξ

will satisfy Y2 = ξ for any function f . If we take as f the function of Lemma 2.3.2, 1 is a
solution but SN(Z)[0,t] is also a solution. By uniqueness, for any N ≥ 0

SN(Z)[0,t] = 1

and thus
S(Z) = S(X)⊗ S(

←−
X ) = 1

15



2. Signature : theoretical foundations

Theorem 2.3.2 provides a criterion for uniqueness of the signature. Before stating it, we
need to investigate what it means for two paths to have the same signature. It is clear
that for two paths X and Y, S(X) = S(Y) does not imply that X = Y. Indeed, Lemma
2.3.1 already tells us that if Y is a reparametrisation of X it will have the same signature.
Moreover, according to Proposition 2.3.1, S(X⊗←−X ) = 1 so the path X⊗←−X has the same
signature as any constant path. The situation is actually even more complicated. Indeed
if X, Y and Z are non-constant paths, then S(X ⊗ Y ⊗←−Y ⊗ Z ⊗←−Z ⊗←−X ) = 1 even if
this path cannot be rewritten as W ⊗←−W . The notion of tree-like paths introduced in [14]
formalizes this idea of a path being ”reducible” to a constant path by certain operations

Definition 2.3.2 (Tree like). A path X : [0, 1]→ E is tree-like if there exists a continuous
function h : [0, 1] → [0,+∞) such that h(0) = h(1) = 0 and such that for all s, t ∈ [0, 1],
s ≤ t,

‖Xs − Xt‖ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

Two paths X and Y are called tree-like equivalent if X ∗←−Y is tree-like (where
←−
Y t = Y1−t).

Example 2.3.2 (Tree-like path). If a path is the concatenation of a smaller path with its
time reversal, then it is tree-like, see figure 2.3.

Figure 2.3: Tree-like path

A useful sufficient condition not to be tree-like is to have one monotonous coordinate.
The paths we will encounter in real-world applications will usually be tree-like. In order
to ensure uniqueness, for any path X(t), we will consider the path (t, X(t)) which will
then not be tree-like. We can now state the uniqueness theorem, proved in [14].

Theorem 2.3.2 (Uniqueness). Let X be a continuous path with bounded variation. Then,

• S(X) = 1 if and only if X is tree-like.

• The signature S(X) is unique up to tree-like equivalence.

In other words, this theorem states that the equivalence relation defined in Definition
2.3.2 is the same as the relation X ∼ Y ⇐⇒ S(X) = S(Y). The result has been
extended in [3] to geometric p-rough paths for some p > 1. In light of what was said
before, the following lemma is a useful sufficient condition to ensure uniqueness of the
signature.
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2.3. Properties of the signature

Lemma 2.3.3. Let X : [0, 1] → E be of bounded 1-variation with at least one monotonous
coordinate. Then S(X) determines X uniquely.

Conversely, some work has been done in order to find sufficient conditions under which
the signature uniquely defines the path (up to reparametrization), see [2] and [19]. Fi-
nally, one can show some results on the norm of the signature. These will give us useful
tools for computing rates of convergence of algorithms with a signature involved.

Proposition 2.3.2. Let X : [0, 1] → E be a path of bounded variation. Recall that ‖X‖1−var is
its 1-variation. Then, for any k ≥ 0,

‖Xk‖E⊗k ≤
1
k!
‖X‖k

1−var < ∞

and
‖S(X)‖T((E)) ≤ exp(‖X‖1−var) < ∞.

Proof. We have:

‖Xk‖E⊗k =

∥∥∥∥∥∥
∫

u1,··· ,uk∈∆k

Xu1 ⊗ · · · ⊗ Xuk

∥∥∥∥∥∥
E⊗k

≤
∫

u1,··· ,uk∈∆k

‖dXu1 ⊗ · · · ⊗ dXuk‖E⊗k

by the triangle inequality (proof with Riemman sums or directly with Cauchy Schwartz).

By property of the tensor norm,

‖dXu1 ⊗ · · · ⊗ dXuk‖E⊗k = ‖dXu1‖E .. ‖dXuk‖E .

Therefore, ∫
u1,··· ,uk∈∆k

‖dXu1‖E .. ‖dXuk‖E =
1
k!

∫
u1,··· ,uk∈[0,1]

‖dXu1‖E .. ‖dXuk‖E ,

because [0, 1]k can be partitioned into all possible orderings of the variables u1, · · · , uk
and there are k! such orderings. We thus get

‖Xk‖E⊗k ≤
1
k!

∫
u1,··· ,uk∈[0,1]

‖dXu1‖E · · · ‖dXuk‖E

≤ 1
k!

∫
u1∈[0,1]

‖dXu1‖E · · ·
∫

uk∈[0,1]

‖dXuk‖E

≤ 1
k!

 ∫
u∈[0,1]

‖dXu‖E


k

≤ 1
k!
||X||k1−var.

The second inequality comes directly from the first one, using triangle inequality and
Taylor expansion of the exponential. More precisely, we have
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‖S(X)‖T((E)) =
√

1 + ∑
k≥0
‖Xk‖2

E⊗k ≤ 1 + ∑
k≥0
‖Xk‖E⊗k

≤ 1 + ∑
k≥0

1
k!
‖X‖k

1−var = exp(‖X‖1−var).

2.3.2 Linear forms on the signature

One remarkable theorem is that the space of linear forms on the signature form an
algebra of functions and thus approximate continuous functions arbitrary well (see The-
orems 2.3.4 and 2.3.5). Statistically, this means that any non-linear relationship can be
modelled by a linear model on the signature (see Section 3.2). For the moment, we
present the space of linear forms on the signature and its structure of algebra. The
multiplication is the shuffle product of elements of the tensor algebra.

Definition 2.3.3 (Shuffle product). A permutation σ of {1, . . . , k + m} is called a (k, m)-
shuffle if σ−1(1) < · · · < σ−1(k) and σ−1(k + 1) < · · · < σ−1(k + m)

Let I = (i1, . . . , ik) and J = (j1, . . . , jm) be two multi-indexes with i1, . . . , ik, j1, . . . , jm ∈
{1, . . . , d}. Then, the shuffle product of I and J, denoted I t J, is a finite set of multi-
indexes of length k + m:

I t J = {(rσ(1), . . . , rσ(k+m))|σ ∈ Shuffles(k, m)}

with (r1, . . . , rk, rk+1,...,rk+m) = (i1, . . . , ik, j1, . . . , jm).

This amounts to shuffling the words I and J without changing the order of their letters.
There are (m+k)!

m!k! elements in I t J. Note that the shuffle product is commutative and
associative.

Theorem 2.3.3 (Shuffle product identity). For a path X : J → E and two multi-indexes
I = (i1, . . . , ik) ⊂ {1, . . . , d}k and J = (j1, . . . , jm) ⊂ {1, . . . , d}k, we have

SI(X)SJ(X) = ∑
K∈ItJ

SK(X).

Proof. The result comes by partitioning the integration domain. Indeed, we have

SI(X)SJ(X) =
∫
· · ·

∫
0<u1<···<uk<1

dXi1
u1

. . . dXik
uk

∫
· · ·

∫
0<t1<···<tm<1

dX j1
t1

. . . dX jm
um

= ∑
σ∈Shuffles(k,m)

∫
· · ·

∫
0<v1<···<vk+m<1

dX
rσ(1)
v1 . . . dX

rσ(k+m)
vk+m

= ∑
K∈ItJ

SK(X),

with (r1, . . . , rk+m) = (i1, . . . , ik, j1, . . . , jm).

Example 2.3.3. For I = {1} and J = {2} we get

S1(X)S2(X) = S12(X) + S21(X).

For I = {1} and J = {2, 3} we get

S1(X)S23(X) = S123(X) + S231(X) + S213(X).
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2.3. Properties of the signature

Not only is the shuffle product a nice property to compute the signature but it actually
characterizes it. Before going further, we need some notation about linear forms on the
tensor space.

First, let E∗ be the dual space of E, that is the space of linear functions from E to R.
We canonically identify the space T(E∗) (tensor space of the dual of E) with T((E))∗

the dual of the tensor space. Indeed, if (e∗1 , · · · , e∗d) is a basis of E∗, then the set (e∗I =
e∗i1 ⊗ · · · ⊗ e∗ik

)I=(i1,··· ,ik)∈{1,...,d}k

k∈N

is a basis of T(E∗) and we identify it with a basis of

T((E))∗ by setting
e∗I (ej1 ⊗ · · · ⊗ ejk) = δi1 j1 . . . δik jk .

We will now denote T(E∗) the space of linear forms on T((E)). We define the shuffle
product of two linear forms: let f ∗, g∗ ∈ T(E∗), then we can write f ∗ = ∑ f Ie∗I , g∗ =

∑ gIe∗I and we define
f ∗ t g∗ = ∑

K∈ItJ
f I gJe∗K.

A first consequence of the shuffle product property is the following theorem:

Theorem 2.3.4. The space of linear forms on the signature endowed with the shuffle product is
an algebra.

Proof. We just need to check that the product of two linear forms on the signature is
itself a linear form on the signature. It is true by the shuffle product property.

This implies the following theorem.

Theorem 2.3.5 (Linear approximations). Let D be a compact subset of BV1(J, E) of paths
that are not tree-like equivalent. Let f : D → R continuous (in 1-variation norm). Then, for
every ε > 0, there exists w ∈ T((E)) such that, for all X ∈ D,

| f (X)− 〈w, S(X)〉| ≤ ε

Proof. This is a direct consequence from Stone-Weierstrass theorem (see Appendix C.2).
Indeed, let us consider

A = span
{

f : X 7→ 〈eI , S(X)〉T((E))|k ≥ 0, I ⊂ {1, · · · , d}k
}

.

A is a linear subspace of the set of continuous functions from D to R, denoted C(D, R).
Because of the shuffle property, it is also a sub-algebra. To apply Stone-Weierstrass
theorem we must check that it contains a non-zero constant function and that it separates
points. The first condition is met because the first term of the signature is one : X 7→
〈ei0 , S(X)〉T((E)) = 1. The second condition is met because of the uniqueness of the
signature: if X, Y ∈ D, X 6= Y, then S(X) 6= S(Y), which means that at least one of their
coordinates differ. By taking the corresponding basis one can find a function f in A
such that f (X) 6= f (Y). So A is dense in C(D, R).

We have proved a little more than the result stated : w will have only a finite number
of non null coordinates because any function in A can be written as a finite linear
combination of 〈ei1 ⊗ · · · ⊗ eik , S(X)〉T((E)).
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2.3.3 Exponential, logarithm and Lie series

We will now see that the shuffle product property characterizes the signature, in the
sense that any element of TN(E) that satisfies this property is the truncated signature of
a path with bounded variation. Moreover, it can be shown that this property is satisfied
if and only if the log of the element is a Lie formal series. Let us state this more precisely.

Definition 2.3.4. An element a ∈ T̃((E)) is group-like if the evaluation mapping

T(E∗) 7−→ R

e∗ −→ e∗(a)

is a morphism of algebras when T(E∗) is endowed with the shuffle product.

We denote G(∗) the space of group-like elements of T̃((E)). In other words, a is group-
like if for any e∗, f ∗ ∈ T(E∗), we have

e∗(a) f ∗(a) = (e∗ t f ∗)(a).

We will see that the range of the signature is a subgroup of G(∗) (and a small one), but
also that, if G(N) = πN(G(∗)), then G(N) coincides exactly with the range of the signature
truncated at order N. For this, we need to introduce the notion of log signature and Lie
formal series.

Definition 2.3.5. Let a ∈ T((E)), then the exponential of a is the function exp : T((E))→
T̃((E))

exp(a) = ∑
k≥0

a⊗k

k!
.

The logarithm is defined as log : T̃((E))→ T((E))

log(a) = ∑
k≥1

(−1)k

k
(1− a)⊗k

Lemma 2.3.4. Let T0(E) = {a ∈ T((E)) : π0(a) = 0} the subset of T((E)) of elements whose
first term is 0. Then exp : T0(E)→ T̃((E)) and log : T̃((E))→ T0(E) are each-other inverses.

Example 2.3.4. We can write example 2.2.2 in a more compact form : when Xt = X0 +
(XT − X0)t for t ∈ [0, 1],

S(X) = exp(XT − X0).

Thus the logarithm of a linear path is just

log(S(X)) = XT − X0

(XT − X0 is seen as an element of the tensor space with all orders null except the first
one equal to XT − X0).

Definition 2.3.6 (Lie formal series). We endow the tensor algebra with a Lie bracket :
for a, b ∈ T((E)), we let

[a, b] = a⊗ b− b⊗ a.

For F1 and F2 linear subspaces of T((E)) we denote [F1, F2] the linear span of all elements
[a, b] such that a ∈ F1 and b ∈ F2. Then, we define recursively L0 = 0, L1 = E, L2 =
[E, L1] = [E, E], L3 = [E, L2] = [E, [E, E]],... and for any n > 0 Ln+1 = [E, Ln]. Ln is
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a linear subspace of E⊗n and is called the space of homogeneous Lie polynomials of
degree n.
Finally, we define the space of Lie formal series over E by

L((E)) = {l = (l0, l1, · · · , ln, · · · )|∀n ≥ 0 ln ∈ Ln} .

We have the following fundamental theorem.

Theorem 2.3.6. For any a ∈ T̃((E)),

a ∈ G(∗) ⇔ log(a) ∈ L((E)).

We can state the corresponding property for truncated spaces.

Lemma 2.3.5. Let L(N) = πn(L((E))), T̃(N)(E) = πn(T̃((E))) and a ∈ T̃((E)). Then
a ∈ G(N) if and only if log(a) ∈ L(N).

Finally, the next proposition shows that G(N) is exactly the range of the signature.

Proposition 2.3.3. Every element of G(N) is the truncated signature of a path of bounded
variation. More precisely, for any p ∈ [1, 2), G(N) is the range of the function

πN ◦ S : BVp(E)→ TN(E).

Lemma 2.3.5 and proposition 2.3.3 tell us that a ∈ TN(E) is the truncated signature
of a bounded variation path if and only if log(a) ∈ L(N). L(N) having a much lower
dimension than T̃(N)(E) (see section 4.2), we will use the log signature of a path instead
of its signature as a feature.
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Chapter 3

Learning with functional data

Back to the statistical problem, we can now describe more precisely our setting. We
want to model a response Y (a real number or an integer) from a function X ∈ BV(Rd).
We are provided a discretized version of X, so in the end we still have a vector but
highly dimensional and with highly correlated covariates. We call X a function because
its ”nature” is functional and it has some regularity properties. In this section, we will
review some strategies adopted in such a statistical setting. In its more general form,
we assume that (X, Y) is a couple of random variables so that there exists a (smooth)
function f ∗ such that

Y = f ∗(X) + ε (3.1)

with E[ε|X] = 0. Different research communities have worked on this general problem.
We find on the one hand the community of functional data analysis, an important refer-
ence being the book of Ramsay [28] and for the nonparametric case the book of Ferraty
[10]. We will review their main model, the functional linear model, in section 3.1.2. On
the other hand, the community of pattern recognition has also worked on this problem,
focusing on times series representation. We will review some of their methods in section
3.1.1

3.1 Review of existing methods

3.1.1 Similarity measures

Time series modelling is an old statistical problem which has been revisited by the
pattern recognition community. Indeed, because of the technological progress, time
series are now highly dimensional, sampled at really small intervals, and traditional
methods don’t work in this context. A lot of work has thus been done on finding good
similarity measures between curves and good high level representations. A review
can be found in [27] and a systematic comparison of their predictive power has been
undertaken in [8]. We describe here some of them and present in more details the
Dynamic Time Wrapping (DTW) method, which shows the most promising results in
[8].

The first and simplest measure is the Euclidean measure. A time series with n points is
seen as a point in an n-dimensional Euclidean space and the distance between two time
series is just their Euclidean distance. Similarly, one can define their Lp distance from the
Lp norm in Rn. A first problem is that two times series which are very similar but have
been translated will have a big Euclidean distance. This can be solved by normalising
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3. Learning with functional data

the time series before computing any distance. Still, it does not allow for acceleration or
deceleration in time series, which is why the dynamic time warping measure has been
introduced in [1]. The goal is to find a mapping of two time series along the time axis,
so that the most similar parts of the curve are mapped together even if they take place
at different time and have been stretched, see figure 3.1.

Figure 3.1: Dynamic time warping matching

The pseudo code of DTW is written in Algorithm 1. The input are two time series s
and t of length n and m. A table of size n× m is constructed and the last entry is the
DTW distance. The algorithm requires to have chosen a metric between two points of
the series. A common choice is the Euclidean distance. We can see that the complexity
is O(nm), which is the main drawback of this algorithm. Some extensions have been
proposed, which reduce the complexity to O(n) by imposing a window when finding
the best wrapping path.

Some other metrics have been constructed with the same kind of ideas. For example the,
longest common subsequence similarity measure (LCSS) looks for the longest sequence
of similar elements of the two series, while allowing to ignore some elements. Then a
similarity measure is defined as m+n−2`

m+n where ` is the longest common subsequence.
This creates a metric more robust to outliers. See [27] for more details on these metrics.

When we have chosen a metric, any algorithm based on a metric can be used to clas-
sify or predict some output. The most commonly used is nearest neighbours but one
can also construct kernels adapted to time series. In case of multivariate time series,
these methods work as we can use the Euclidean metric in a higher dimensional space,
but they do not contain any information about interaction between the different dimen-
sions of the series. Moreover, they become computationally very intense. Still,, we will
compare the DTW method with other methods in Table 4.3.

3.1.2 The functional linear model

We present here the fundamental model used in [28]. Contrary to the lasts section, this
is a parametric model. Most of the work of the authors focus on estimating in this set-
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3.1. Review of existing methods

Algorithm 1 Dtw algorithm

Require: s : array[1 · · · n], t : array[1 · · ·m]
DTW ← array[0 · · · n; 0 · · ·m]
for i = 1 to n do

DTW[i; 0]← ∞
end for
for j = 1 to m do

DTW[0; j]← ∞
end for
DTW[0, 0]← 0
for i = 1 to n do

for j = 1 to m do
cost← ‖s[i]− t[j]‖
DTW[i, j]← cost + min(DTW[i− 1, j], DTW[i, j− 1], DTW[i− 1, j− 1])

end for
end for
return DTW[n, m]

ting and reducing the dimension so that we are back in a classical finite dimensional
regression setting. Assume we want to regress a scalar variable y on a functional predic-
tor x(t) for t ∈ [0, 1] and that we have n data points. We assume the following model,
first introduced in [29]. For i = 1, . . . , n,

yi = b0 +
∫ 1

0
xi(t)b(t)dt + ε i, (3.2)

with b(t) a continuous coefficient, b0 an intercept and ε i ∼ N (0, σ2) the residual error.

We cannot use least squares method and minimize

b̂ = argmin
b

∑
i

(
yi − b0 −

∫ 1

0
xi(t)b(t)dt

)2

because b is infinite dimensional so we will always achieve a perfect fit, which is not
desirable as we will strongly overfit the data. There are two main solutions to this
dimension issue. Either we use a penalty term

b̂ = argmin
b

∑
i

(
yi − b0 −

∫
xi(t)b(t)dt

)2

+ λ
∫
(Lb(t))2dt

with λ a smoothing parameter and L a linear operator (for example Lb(t) = ∂2b(t)
∂t ,

called the total curvature penalty). The second solution is to reduce the class of possible
functions for b, which is done with basis expansion, presented below. Both achieve
regularization and can also be used together. A traditional approach is to use basis
functions (see [28] section 15 ). Assume that b can be written as b(t) = ∑K

j=1 bj ϕj(t), we
can rewrite model (3.2) as

yi = b0 +
K

∑
j=1

bj

∫
xi(t)ϕj(t)dt + ε i = b0 + zT

i b + ε i
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3. Learning with functional data

with b = (b1, . . . , bK)
T,ϕ(t) = (ϕ1(t), . . . , ϕK(t))T and zi =

∫
xi(t)ϕ(t)dt. This is a linear

model of dimension K. Then in matrix form the model is

y = Zb + ε

with the ith row of Z being zT
i . The least squares solution is

b̂ = argmin(y− Zb)T(y− Zb) = (ZTZ)−1ZTy.

If we add some penalty on b of the form λ
∫
(Lb(t))2dt, we get the solution

b̂ = argminb(y− Zb)T(y− Zb) + bTRLb = (ZTZ + λRL)
−1ZTy

with RL the penalization matrix RL = (
∫

L(ϕi(t)ϕj(t))1≤i,j≤K.

Two commonly used basis functions are the Fourier basis and the B-spline basis, plotted
in figure 3.2. The Fourier basis is defined as follows: if K = 1 + 2m, then

ϕ0(t) = 1, ϕ2j(t) = cos(2πmt), ϕ2j−1 = sin(2πmt) for j = 1, · · · , m.

B-splines are a really common set of basis functions: splines of order n are piecewise
polynomial of degree n− 1, such that its first n− 1 derivatives are continuous at each
knots. B-splines are defined such that any possible spline is equal to a unique linear
combination of B-splines.

(a) Fourier basis for K = 3 (b) B-spline basis of order 4 with 4 knots

Figure 3.2: Basis functions

3.1.3 Functional principal component analysis

To conclude, we also present functional principal component analysis (fPCA), which
has been a popular tool for modelling functional data, see [28] Chapter 8. Recall that
in the last section, we have expanded b on a set of basis functions. An alternative is to
use a basis for x, which is the method presented here. Let us recall how classical PCA
is defined. Assume we have n data points (x1, . . . , xn) ∈ Rp and X is the design matrix
in Rn×p. We assume that X has been centered : for any 1 ≤ j ≤ p, ∑i xij = 0.

• We define the first principal component as f1 = Xξ1 ∈ Rn with ξ1 ∈ Rp the load-
ings such that the variance of f1 is maximal and ξ1 is normalized, i.e. we maximize
∑i f 2

i1 such that ‖ξ1‖2 = ∑j ξ2
1j = 1. The fi1 are called the scores on the first PC and

they are by definition fi1 = ∑j ξ1jxij, which is a linear combination of the predic-
tors.
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3.1. Review of existing methods

• We define similarly ξ2 and f2 = ξT
2 X maximizing ∑i f 2

i2 such that f2 is of norm 1
and uncorrelated with f1 : ∑j ξ1jξ2j = 0.

• We define similarly ξ3, . . . , ξp.

We observe that this problem is equivalent to finding the eigendecomposition of the
covariance matrix XTX. Indeed, we have ∑i f 2

ik = f T
k fk = ξT

k XTXξk and for any matrix
V the problem maxξTξ=1 ξTVξ is solved by finding the eigenvector corresponding to the
largest eigenvalue of V. In our case, V = XTX. It is a symmetric matrix so it has a
spectral decomposition of the form V = QDQT and ξk is the kth column of Q.

In the functional case, we define functional principal components similarly, mainly by
replacing sums by integrals. More precisely, we define the weight functions ξk : [0, 1]→
R and the principal component scores fik =

∫
ξk(t)xi(t)dt. ξ1 is chosen such that ∑i f 2

i1
is maximal and

∫
ξ1(t)2dt = 1. Similarly, ξ2 maximizes ∑i f 2

i2 such that
∫

ξ2(t)2dt = 1
and

∫
ξ1(t)ξ2(t)dt = 0... Functional PCA can be expressed as an eigenvalue problem

exactly like classical PCA. Indeed, let

v(s, t) =
1
N ∑

i
xi(s)xi(t)

be the covariance function. One can show that the weight functions are solution of∫
v(s, t)ξ(t)dt = ρξ(s)

for an appropriate value of ρ. If we define the operator V : ξ →
∫

v(·, t)ξ(t)dt, this can
be written as Vξ = ρξ, which has the form of an eigenvalue problem. The functions
ξk are also referred to as empirical orthonormal functions and one can show that if we
define x̃i(t) = ∑K

k=1 fikξk(t), then the ξk minimize the integrated squared error

‖xi − x̃i‖2 =
∫
(xi(t)− x̃i(t))2dt.

Thus they are a good representation of xi and can be used as a basis function for xi.

Back to our regression problem, we then let

xi(t) = ∑
j

fijξ j(t)

If we plug it in equation (3.2), we get

yi = b0 +
∫

b(t)∑
k

fijξ j(t)dt = b0 + ∑
j

fij

∫
b(t)ξ j(t)dt,

which gives
yi = b0 + ∑

j
bj fij

if bj =
∫

b(t)ξ j(t)dt. This is again a standard finite dimensional linear regression prob-
lem.

Note that both these methods are defined when there is only one predictor x which
values in R. Like the simple linear model, they can be extended to the multivariate case
by adding explicit terms in (3.2). This supposes a parametric choice of the interaction
between different terms. Moreover, these are linear models and thus they won’t be able
to model complex relationships.
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3. Learning with functional data

3.2 Nonparametric regression with the signature features

We present now the signature method, which contrary to basis expansion and fPCA
does not rely on any assumption concerning the relationship between the predictor
function X and the output Y. Moreover, this method takes into account interaction be-
tween different dimensions of X, contrary to methods in Section 3.1.1, and linearises the
problem so that it is computationally efficient. This method has been introduced in [21].

In light of theorem 2.3.5, we model Y as a linear function of the signature of the input
X. The signature being an infinite object, we truncate it up to an order m. The best
order is selected by cross validation and the regression coefficients are fitted with L2
penalized least squares. Moreover, we have seen that the log signature is isomorphic to
the signature and lives in a vector space, the free Lie algebra, which is of much smaller
dimension than the full tensor space. Even if theorem 2.3.5 has been proven with the
signature we will thus use the log signature features in our algorithms. To compute
the signature, the data is linearly interpolated so that the formula of example 2.3.1 is
valid. More details about the computations is given in section 4.2. To summarize, we
can describe our approach by the following process:

Path X −→ Features Sm(X) −→ Ridge regression −→ Prediction.

3.2.1 Regression case

Let us first present our model and estimator in the regression case. Let D be a compact
subset of BV(Rd) and C be defined by

C = { f : D → R| f continuous for ‖.‖1−var}.

We assume that (X, Y) is a random vector, X ∈ BV(Rd), Y ∈ R. We make the assump-
tion that X ∈ D almost surely and that there exists a function f ∗ ∈ C such that

Y = f ∗(X) + ε,

with E[ε|X] = 0, E[ε2|X] = σ2. We are thus in a random design setting. We estimate f ∗

by a linear function on the signature features, truncated up to a certain order m. Let us
define these function spaces more precisely:

Sm = { f : BV(Rd)→ R|∃β ∈ Tm(Rd), ∀X ∈ BV(Rd), f (X) = 〈β, Sm(X)〉}
= Span{πI : X → SI(X)|I ⊂ {1, · · · , d}k, k ≤ m}

with the notations introduced in section 2.2.1. In other words, we approximate the
unknown function f ∗ by a function of the form

f (.) =
m

∑
k=1

∑
I⊂{1,··· ,d}k

β ISI(.) ∈ Sm.

We let the space of any finite linear form on the signature be S =
⋃

m∈N Sm. Note that
each Sm is a linear subspace of C, spanned by the functions πI . Theorem 2.3.5 tells us
that S is dense in C so that f ∗ can be approximated arbitrarily good by a function of S .

The least squares estimator, denoted by f̂m,n, is defined to be

f̂m,n = argmin f∈Sm

n

∑
i=1

(Yi − f (Xi))
2.
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3.2. Nonparametric regression with the signature features

In practical applications, we will use a L2 regularization, so that f̂m,n = 〈β̂m,n, Sm(.)〉 and

β̂m,n = argin
β

(Yi − 〈β, Sm(Xi)〉)2 + λ‖β‖2
2

3.2.2 Classification case

For the classification case, we use a logistic regression model. Let us restate it more
precisely. We consider a random vector (X, Y) so that Y takes only two values: Y ∈
{0, 1}, X ∈ D a.s., and we assume that there exists a function f ∗ ∈ C such that

E[Y|X = x] = P(Y = 1|X = x) =
exp( f ∗(x))

1 + exp( f ∗(x))
.

Then, we estimate f ∗ by f̂m,n that maximises the likelihood of the data Dn in the class
Sm. More precisely, if pi = P(Y = 1|X = Xi), f ∈ Sm, the likelihood is equal to

L(Y|X, f ) =
n

∏
i=1

pYi
i (1− pi)

1−Yi

and the log likelihood is then

`( f ) = logL(Y|X, f ) =
n

∑
i=1

Yi log
(

pi

1− pi

)
+ log(1− pi)

=
n

∑
i=1

Yi f (Xi)− log(1 + exp( f (Xi))).

Therefore, we define
f̂m,n = argmax

f∈Sm

`( f ).

In applications, we will use some regularization on β, that is

β̂m,n = argmax
β

n

∑
i=1

Yi〈β, Sm(Xi)〉 − log(1 + exp(〈β, Sm(Xi)〉))− λ‖β‖2
2.

3.2.3 Least squares rate of convergence

In this section, we present a theoretical bound on convergence of the signature regres-
sion method presented in Section 3.2.1, without regularization. We keep assumptions
of Section 3.2.1 but for technical reasons, we also need to assume that f ∗ is uniformly
bounded: there exists L > 0 such that ‖ f ∗‖∞ = supX∈BV(Rd) | f ∗(X)| ≤ L. Classically, we
define the L2 risk for a function f ∈ C by

R( f ) = E(Y− f (X))2

and, for an iid sample Dn = ((X1, Y1), . . . , (Xn, Yn)), the empirical risk is defined by

Rn( f ) =
n

∑
i=1

(yi − f (xi))
2.

We also define the truncated estimator f̂ L
m,n by the following: for any x ∈ Rd,

f̂ L
m,n(x) =

{
f̂m,n(x) if |x| ≤ L.
Lsign(x)otherwise.
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3. Learning with functional data

The following theorem gives a rate of convergence of the L2 risk of f̂ L
m,n to f ∗, following

the methodology of [13]. For simplicity of notation, we write ‖X‖ for its 1-variation
‖X‖1−var.

Theorem 3.2.1. Let p(m) be the dimension of Sm. For any δ > 0, there exists constants Mδ

and c such that

R( f̂ L
m,n)−R( f ∗) ≤c max(σ2, L2)

(log n + 1)p(m)

n
+

Mδ

(m + 1)!
E

[
‖X‖m+1e‖X‖

(
δ + Mδ

‖X‖m+1

(m + 1)!
e‖X‖

)]
+ δ2.

(3.3)

Proof. We can decompose the left hand side into estimation and approximation errors,
which we will treat separately:

R( f̂n,m)−R( f ∗) = R( f̂n,m)− inf f∈SmR( f ) + inf f∈SmR( f )−R( f ∗).

Approximation error: By density of S (see theorem 2.3.5) we know that, for any δ > 0
small, there exists m∗ ∈N and β∗ ∈ Tm∗(Rd) such that, for any X ∈ D,

| f ∗(X)− 〈β∗, Sm∗(X)〉| ≤ δ. (3.4)

We assume m∗ is larger than m (otherwise we add zeros to β∗) so that we can decompose
the scalar product as

〈β∗, Sm∗(X)〉 = 〈β∗1:m, Sm(X)〉+ 〈β∗m:m∗ , Sm:m∗(X)〉

with Sm:m∗(X) the vector containing the signature terms from order m + 1 to m∗. We can
decompose the approximation error into two terms

inf
f∈Sm
R( f )−R( f ∗) = inf

f∈Sm
R( f )−R(〈β∗, Sm∗(.)〉) +R(〈β∗, Sm∗(.)〉)−R( f ∗). (3.5)

First note that
R( f ∗) = E(Y− f ∗(X))2 = E(ε2) = σ2.

Then, the second term of (3.5) is bounded by

R(〈β∗, Sm∗(.)〉)−R( f ∗) = E(Y− 〈β∗, Sm∗(X)〉)2 − σ2

= E( f ∗(X)− 〈β∗, Sm∗(X)〉)2 + Eε2 − σ2

≤ δ2

To deal with the other term, we decompose R(〈β∗, Sm∗(.)〉) as follows:

R(〈β∗, Sm∗(.)〉) = E
(

Y− 〈β∗1:m, Sm(X)〉 − 〈β∗m:m∗ , Sm:m∗(X)〉
)2

= E (Y− 〈β∗1:m, Sm(X)〉)2 + E
(
〈β∗m:m∗ , Sm:m∗(X)〉

)2

− 2E
(
〈β∗m:m∗ , Sm:m∗(X)〉(Y− 〈β∗1:m, Sm(X))〉

)
.

First, we see that

E (Y− 〈β∗1:m, Sm(X)〉)2 = R(〈β∗1:m, Sm(.)〉) ≥ inf f∈SmR( f ),
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3.2. Nonparametric regression with the signature features

so that

inf f∈SmR( f )−R( f ∗)

≤ −E
(
〈β∗m:m∗ , Sm:m∗(X)〉

)2
+ 2E

(
〈β∗m:m∗ , Sm:m∗(X)〉(Y− 〈β∗1:m, Sm(X))〉

)
≤ E

(
〈β∗m:m∗ , Sm:m∗(X)〉

(
2 (Y− 〈β∗1:m, Sm(X)〉)− 〈β∗m:m∗ , Sm:m∗(X)〉

))
≤ E

(
〈β∗m:m∗ , Sm:m∗(X)〉

(
2
(

f ∗(X)− 〈β∗, Sm∗(X)〉
)
+ 〈β∗m:m∗ , Sm:m∗(X)〉+ 2ε

))
≤ E

(
〈β∗m:m∗ , Sm:m∗(X)〉

(
2δ + 〈β∗m:m∗ , Sm:m∗(X)〉+ 2ε

))
where we use (3.4) for the last inequality. Given that E[ε|X] = 0, the term with ε cancels
out. Moreover, by Cauchy-Schwartz inequality, for any X ∈ D,

|〈β∗m:m∗ , Sm:m∗(X)〉| ≤ ‖β∗m:m∗‖‖Sm:m∗(X)‖.

By Proposition 2.3.2, the signature coefficients have an exponential decay, so that

‖Sm:m∗(X)‖ =
m∗

∑
k=m+1

‖Xk‖E⊗k ≤
∞

∑
k=m+1

‖X‖k

k!
=
‖X‖m+1

(m + 1)!
exp(‖X‖).

and

|〈β∗m:m∗ , Sm:m∗(X)〉| ≤ Mδ
‖X‖m+1

(m + 1)!
exp(‖X‖)

where Mδ = ‖β∗m:m∗‖ is a constant depending on δ. Wrapping things up, we can bound
the approximation error by

inf f∈SmR( f )−R( f ∗) ≤ Mδ

(m + 1)!
E

[
‖X‖m+1e‖X‖

(
δ + Mδ

‖X‖m+1

(m + 1)!
e‖X‖

)]
+ δ2.

Estimation error: We can now turn to the estimation error term

R( f̂n,m)− inf f∈SmR( f ).

The proof is a direct application of Theorem 11.3 from [13], we refer the reader to
Appendix C.3 for more details. We need to reformulate the problem so that it has the
same form as Theorem C.3.2. For any measurable function f , we have

R( f ) = E(Y− f (X))2 = E
[
( f ∗(X)− f (X))2]+ σ2

and for any estimator f̂n depending on Dn, independent of (X, Y), we have,

R( f̂n) = E( f ∗(X)− f̂n(X) + ε)2 = E( f ∗(X)− f̂n(X))2 + σ2

because E(ε( f ∗(X)− f̂n(X))) = E(( f ∗(X)− f̂n(X))E(ε|X)) = 0

So
R( f̂ L

m,n)− inf f∈SmR( f ) = E( f ∗(X)− f̂ L
m,n(X))2 − inf f∈Sm( f ∗(X)− f (X))2

and from Theorem C.3.2, one has

R( f̂ L
m,n)− inf f∈SmR( f ) ≤ c max(σ2, L2)

(log n + 1)p(m)

n
,

which completes the proof.
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3. Learning with functional data

This inequality is a bias-variance trade off: when the complexity of the class Sm in-
creases, the first term increases as p(m) and the second one decreases like 1

(m+1)! . The
first term is thus a variance term and the second one a bias term. One can see this
behaviour in experiments on cross-validation curves (see figure 4.5). The dimension of
the vector space Sm is the same as the dimension of the free Lie algebra L(m), defined in
section 2.3.3. The exact form of p(m) will be given in section 4.2 and is quite involved.
To conclude, this ridge regression algorithm is totally non-parametric, it reduces the
analysis to a linear problem (when the signature features have been computed) and
decreases strongly the dimensionality of the problem.

3.2.4 Conclusion and future work

Now that we have obtained inequality (3.3), the next step is to look for an adaptive esti-
mate, minimizing the risk for several class of functions (i.e., several m) simultaneously.
It should also be relevant to compute (3.3) with some assumptions on f ∗ (Lipschitz
continuous, Hölder...) and compare the resulting bound with the ones obtained with
other representations (wavelet, spline basis...). Furthermore, one needs to extend the
result 3.2.1 to the classification case. Finally, it will be interesting to investigate theoret-
ical properties of the signature of paths of unbounded variation. It would extend the
method to highly oscillatory signals, which is useful in many applications. We would
also like to investigate other algorithms combined with the signature features. Indeed,
the major success of the signature has been achieved with a convolutional neural net-
work (see [34]) and it would be interesting to investigate the properties of the signature
features in this setting.
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Chapter 4

Experimental results

We can now proceed to a description of the experimental results, which show the poten-
tiality of the signature in real-world applications.

4.1 Data

4.1.1 Real world datasets

Let us first describe the different data sets we have used. We have tried to use data sets
of different nature. The first one is a one-dimensional data set from [5], called ECG200
dataset, see Figure 4.1. It consists of a set of electrocardiogram records of normal and
Myocardial infarction heartbeats. There are 100 observations in the training set and 100
in the test set.

Figure 4.1: 5 samples of each class of the ECG dataset

The second dataset is a character trajectories dataset from the UCI Machine learning
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repository [7], see Figure 4.2. It consists of 2858 samples of a 3-dimensional time series:
position coordinates x and y and pen tip force. The data has been preprocessed with
first order differentiation and Gaussian smoothing.

Figure 4.2: Two samples of the letter a in the Character trajectory dataset.

The last dataset is called Japanese Vowels and consists of 640 time series of 12 LPC
cepstrum coefficients (see [18]) taken from 9 male speakers uttering the vowel /ae/.
The goal is to determine who is speaking from the 12-dimensional time series. 9 of the
12 dimensions of one curve are plotted in Figure 4.3.

Figure 4.3: 9 coordinates of a sample of the Japanese Vowels dataset

4.1.2 Simulated datasets

It is also useful to use data for which we know the underlying regression function.
We thus create the following data: X : [0, 1] → Rd, Xt = (X1

t , · · · , Xd
t ) and the kth

component of X is the function Xk
t = α1k + 10α2k sin( 2πt

α3k
) + α4k(t − α5k)

3, with all the
parameters α sampled uniformly on [0, 1], see figure 4.4. Thus we have a dataset for any
possible dimension d.

Then we create different responses to these inputs. For regression, we define

• Linear relationship:

Y =
1
d

d

∑
k=1

∫ 1

0
cos(2πt)Xk

t dt + ε,
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Figure 4.4: 5 different realizations of Xt

• Nonlinear relationship:

Y =
1
d

d

∑
k=1

∫ 1

0
cos(2πt)(Xk

t )
2dt + ε,

• Nonlinear relationship with interaction:

Y =
1

d− 1

d−1

∑
k=1

∫ 1

0
(Xk

t )
2 log(|Xk+1

t |)dt + ε,

• Sparse relationship:

Y =
∫ 1

0
cos(2πt)(X1

t )
2dt + ε.

For classification, we can them transform Y into a binary response : Ynew = 1Y≥M with
M a constant properly chosen so that the dataset is as balanced as possible.

4.2 Computing the signature

For our approach to be practically relevant, one needs to have an efficient way of calcu-
lating signature features. To our current knowledge, two Python packages are available:
the esig package from CoRoPa [9] and the iisignature package. We have used the
latter, which is more recent and more efficient for our data. Indeed, the CoRoPa project
focuses on sparse signature arrays, when a lot of signature coefficients are null, whereas
iisignature is more efficient for dense signature arrays, see [31] for a performance
benchmark of these two implementations.

We have defined in section 2.3.3 the space of the homogeneous Lie polynomials of degree
m, L(m)(E) and stated that the log-signature truncated at order m belongs to this space.
For computations, we still need to construct a basis of this vector space, so that the
log signature is described with a minimum number of coefficients. Several basis exist,
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one of them being the Lyndon basis, described in [30] and it is the default option in
the iisignature package. Lyndon basis is obtained by constructing a bijection between
Lyndon words of length m on an alphabet 1, . . . , d and L(m)(E). A Lyndon word of
length m is such that it is strictly smaller for the lexicographic than any of its rotations.

Example 4.2.1 (Lyndon words). We present some examples of Lyndon words.

• The word 1223 is a Lyndon word, but its permutations 2231, 2312 and 3122 are
not.

• The empty word, every single-letter world and every word with a repeating pat-
tern (e.g. 123123) are not Lyndon words.

The number of possible Lyndon words gives the dimension of L(m)(E), denoted p(m)
in section 3.2.3, and is equal to

p(m) =
1
m ∑

q|m
µ(

m
q
)dq, (4.1)

with the sum being over all possible divisors q of m and µ being the Möbius function,
see [32] and the references given there. We give some of these dimensions in Table 4.1
for comparison with the dimension of the entire tensor space.

m 0 1 2 3 4 5 6 7
Tm(R2) 1 3 7 15 31 63 127 255
L(m) 0 2 3 5 8 14 23 41

Table 4.1: Comparison of dimensions of Tm(R2) and L(m)(R2)

Now that we have a basis on which we can represent the log signature, we need to be
able to compute it. In iisignature, the path is linearly interpolated so the task is re-
duced to the case of piecewise linear paths. We have seen that there exists a closed form
formula for the signature (see example 2.3.1) thanks to Chen’s identity. It is a little more
complicated to compute the log-signature directly. Indeed, we know the log signature
of a linear path (it is just its displacement, see Example 2.3.4) but Chen’s formula 2.3.1 is
not valid any more so we cannot compute the log signature of the concatenation of two
paths directly from the log signature of each segment. However, the log signature of the
concatenation of two paths can be computed as the Baker-Campbell-Hausdorff (BCH)
product of the two log-signatures. In its more general form, the BCH formula gives the
expression in a Lie algebra of log(exey) when x and y are elements of a Lie algebra. In
other words, it expresses the logarithm of the product of two Lie group elements as a
Lie algebra element. In our case, let `(X) and `(Y) be the log signatures of two paths X
and Y, then the signature of the concatenation X ∗Y is e`(X) ⊗ e`(Y) and its log signature
is log(e`(X) ⊗ e`(Y)). The first terms of the BCH formula are given below:

log(eX ⊗ eY) = X + Y +
1
2
[X, Y] +

1
12

([X, [X, Y]] + [Y, [Y, X]]) + ....

This gives a method for computing directly the log signature of a piecewise linear path.

4.3 Procedure

Let us now describe the algorithm we have implemented which we call later ”Ridge
with signature”. First, we split the data into a training set and a test set. On the training

36



4.4. Results

set, we perform a 5-folds cross validation to determine the best truncation order of the
signature. More precisely, we split the data into 5 folds, we iteratively leave one out,
fit a ridge (logistic) regression with log-signature features up to order m and test the
prediction error on the fold left apart. For classification, the error metric used is the
misclassification rate : the proportion of samples which have not been classified in the

right class. For regression, it is the relative mean squared error: RMSE = ∑n
i=1(Yi−Ŷi)

2

∑n
i=1(Yi−Ȳ)2

with Ȳ the sample average of Y.

(a) Character trajectories (b) Japanese vowels

(c) ECG

Figure 4.5: Error rate as a function of truncation order, obtained by 5-folds cross valida-
tion for our 3 datasets. The dotted red line is the error rate of a naive regression with
raw features.

We plot in figure 4.5 the cross-validation curves, that is the prediction error as a function
of the truncation order. We can see that the optimal truncation order is 7 for the ECG
dataset, 5 for the Character trajectories and 3 for the Japanese vowels. It achieves a better
error rate than a naive regression where the positions are stacked together, while it also
reduces the dimension from 615 to 294 features for the character trajectories and from
96 to41 for ECG. The dimension for the Japanese Vowels actually increases because the
initial trajectories are sampled with only 29 points so that the raw vector is of dimension
348 and the signature one of size 819.

4.4 Results

We describe in this section some of the experiments we have conducted in order to better
understand properties of the signature. For this, we have used the real data described
in section 4.1 as well as some simulated datasets.
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4.4.1 Study of the log transformation

A first question we have asked ourselves is whether considering the log signature in-
stead of the signature changes the results. Indeed, we have seen in previous sections
that the log signature is a lower dimensional representation of the signature, thus a bet-
ter one from a statistical point of view. We have compared experimentally the results of
regression on the signature and on the log signature for several datasets. We show for
example the result for the simulated dataset with a non linear response and d = 1. We
can see that using the signature features give slightly better results for small truncation
orders but that they both converge to the same error so that from order 8 there is hardly
any difference. On the x-axis, the dimensions of the coefficients corresponding to this
truncation order are shown. We can see that at order 8 the error rates are similar and
taking the log decreases the dimension from 510 to 71.

Figure 4.6: Comparison of relative mean squared error for the 1-dimensional simulated
data set with non linear response.

We also report in table 4.2 the error rate differences for the 3 experimental datasets.
For each dataset we report the error rate for the truncation order minimizing the cross
validation error. We can see that the signature yields only slightly better results.

Dataset Truncation order Log signature Signature
Character trajectories 5 0.013 0.013

ECG 8 0.18 0.16
Japanese vowels 3 0.024 0.016

Table 4.2: Comparison signature and log signature results

4.4.2 Study of influence of dimension of X

We have also studied how the signature behaves when the dimension of X increases.
More precisely, we have a process X : [0, 1] → Rd and a response Y = f (X) + ε and
we want to know what happens when d increases. For this we study the evolution of
the error rate when we increase the dimension of the simulated dataset. We compare
the performance of the signature truncated to order 3 and the raw regression when all
dimensions are stacked in one vector.
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We use the following procedure :

1. We simulate a data set of 2000 samples (Xi, Yi) according to one of the models
described in section 4.1.2.

2. We randomly split it into a training set and a test set (half of the observations
in each). We fit a regression model with raw features and signature truncated at
order 3. We compute the error on the test set.

3. Repeat the last 2 steps 20 times to obtain a boxplot accounting for the randomness
in the splitting process.

(a) Linear case (b) Non linear case

(c) Interaction case (d) Sparse case

Figure 4.7: Boxplot of the RMSE for 2000 samples of different simulated datasets. Blue
: ridge with signature features. Pink : ridge with raw features.

Figure 4.7 shows the results. One can observe that when signature features are used, the
error decreases in almost all settings. It decreases most in the non-linear and sparse case,
which suggests that the signature is able to model any complex, non linear, relationship
between X and Y. In the linear case, the model with raw features is the true model so
it should perform really well but even in this case the signature performs a little better.
Concerning the behaviour with regard to the dimension of X, we can see that the error
always increases with the dimension of X. There seems to be a threshold d after which
raw features show a smaller error than signature features. To understand this better,
we investigate the evolution of this threshold with sample size. We observe in figure
4.8 that this threshold increases the sample size. This suggests that asymptotically, the
signature has better properties. Finally, for the interaction case, both algorithms have
quite poor results, the RMSE is between 0.5 and 1.

4.4.3 Study of noise influence

With the simulated dataset, we can also vary the variance of the noise ε. We plot in
figure 4.9 the results for a non linear response. We can observe that when the signature
features are used, the error increases with noise whereas the error stays similar when
raw data is used.
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(a) 200 samples (b) 2000 samples

(c) 20000 samples

Figure 4.8: RMSE as a function of dimension for a non linear response. Blue : ridge
with signature features. Pink : ridge with raw features.

Figure 4.9: Relative MSE as a function of the variance of the noise for a non linear
response. Blue : ridge with signature features. Pink: ridge with raw features.

4.4.4 Comparison of prediction performances

We compare the performance of the ridge regression with signature features with some
other classical algorithms. The results are summarized in table 4.3. For Ridge, Ran-
dom Forest, 1-NN and XGBoost, we use as features a vector of discretization of the
path. When it is multidimensional, we just stack them into a unique, long vector. The
algorithms are fitted with the Python library scikit-learn [25] except Nearest Neigh-
bours which are fitted with tslearn. The regularization parameter in Ridge is cho-
sen by the default efficient Leave-One-Out cross validation of the function RidgeCV in
scikit-learn. For the Random Forest, we have used 20 trees and 30% of features at
each split. For XGBoost, we have used the default parameters.

One can see in table 4.3 that the signature achieves the best or close to the best prediction
accuracy, while being computationally less intense. Indeed, we have seen in figures 4.5
that a small truncation order is usually selected. Another interesting observation is that
the best error reduction is achieved on the Character trajectories dataset. This agrees
with the fact that the signature coefficients encode information about geometry of the
path, as these are the important aspects for recognising character trajectories. Moreover,
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Algo Character trajectories ECG Japanese Vowels
Ridge with signature 0.012 0.18 0.024

Ridge 0.028 0.2 0.027
Random forest 0.029 0.18 0.059

1-NN 0.028 0.1 0.075
1-NN dtw 0.020 0.23 0.051
XGBoost 0.027 0.21 0.083

Table 4.3: Comparison of results

it improves accuracy for the two multidimensional datasets whereas for the simpler data
ECG, a simple nearest neighbours algorithm is better. The signature captures interaction
between different dimensions and thus captures information that other algorithms do
not.
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Appendix A

Tensor product space

A.1 Constructive definition

We present here a constructive definition of the tensor product space as well as the
universal property (see [26]). Let us recall the definition of a tensor product.

Definition A.1.1 (Tensor product of vector spaces). Let V and W be two vector spaces
over a field K. A tensor product of V and W denoted by V⊗W is a vector space over the
same field K with a bilinear map ϕ : V ×W → V ⊗W such that for any basis e = (ei)i∈I
of V and f = ( f j)j∈J then

ϕ(e× f ) = {ϕ(ei, f j)|ei ∈ e, f j ∈ f }

is a basis of V ⊗W.

Definition A.1.2 (Free vector space). Let A be a set and K a field. Then the free vector
space over K generated by A is the space of all formal finite linear combinations of
elements of A, denoted by F(A).

Thus A is a basis of F(A).

Definition A.1.3 (Quotient space). Let V be a vector space over a field K and N a
subspace of V. We define an equivalence relation ∼ on V : for any x, y ∈ V,

x ∼ y ⇐⇒ x− y ∈ N,

and we denote its equivalence classes as [x]. Then, the quotient space V/N is defined
as the set of all equivalence classes of V for ∼, with addition and scalar multiplications
defined as

[x] + [y] = [x + y],

α[x] = [αx],

for any x, y ∈ V, α ∈ K. The map x ∈ V → [x] ∈ V/N is called the quotient map.
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The tensor space of two vector spaces V and W can be constructed as the quotient of
the free vector space of the Cartesian product of V and W, F(V ×W), by the subspace
N consisting of all formal series of F(V ×W) that are equal to 0 by bilinearity. More
precisely, we define N as the subspace of F(V ×W) spanned by vectors of the form

(u + kv, w + lx)− (u, w)− k(v, w)− l(u, x)− kl(v, x),

for k, l ∈, u, v ∈ V and w, x ∈ W. We will prove in theorem A.1.2 that F(V ×W)/N
satisfies Definition A.1.1. Let π : F(V ×W) → F(V ×W)/N be the quotient map, we
define for v ∈ V, w ∈W

ϕ(v, w) = π((v, w)).

Proposition A.1.1. ϕ defined above is bilinear.

Proof. This comes directly from the definition of N. Indeed, we need to show that for
any k, l ∈, u, v ∈ V and w, x ∈W, we have

ϕ(u + kv, w + lx) = ϕ(u, w) + kϕ(v, w) + lϕ(u, x) + klϕ(v, x).

We know that for any z ∈ N, π(z) = 0 (by definition of the quotient map) so ϕ(z) = 0
and one has (u + kv, w + lx)− (u, w)− k(v, w)− l(u, x)− kl(v, x) ∈ N hence the result
by bilinearity of π.

We need the following lemma to prove the universal property and the fact that F(V ×
W)/N is indeed a tensor product space.

Lemma A.1.1. Let V, W vector spaces over R, T : V → W linear and S subspace of V. Then
there exists T̄ : V/S → W linear such that T̄(x + S) = T(x) for all x ∈ V if and only if
T(s) = 0 for all s ∈ S.

Proof. Let us assume that T̄ exists, then, for any s ∈ S, T(s) = T̄(s + S) = T̄(0) = 0.
Conversely, if T(s) = 0 for all s then T̄ is well defined : if x, y ∈ V are such that
x + S = y + S, then T(x) = T(y) (because x− y ∈ S) and T̄(x + S) = T̄(y + S).

Theorem A.1.1 (Universal property). Let V and W be two vector spaces over a field K,
V ⊗W = F(V ×W)/N and ϕ as defined above. Then, for every vector space X and bilin-
ear map f : V×W → X, there exists a unique linear map T : V⊗W → X such that f = T ◦ ϕ.

In other words, giving a bilinear map from E × F is the same as giving a linear map
from E⊗ F.

Proof. This is a consequence of the previous lemma. Indeed, as V ×W is a basis of
F(V ×W) we can extend by linearity f to a mapping from F(V ×W) to X. Then, as f
is bilinear, we have, for any z ∈ N, f (z) = 0 (by a similar argument as in propostion
A.1.1) and thus we can apply the lemma : there exists a linear T : F(V ×W)/N → X
such that T(ϕ(v, w)) = f (v, w).

This universal property is often taken as a definition of the tensor product.
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Theorem A.1.2. F(V ×W)/N with the bilinear map ϕ is a product space, that is for any basis
e = (ei)i∈I of V and f = ( f j)j∈J then

ϕ(e× f ) = {ϕ(ei, f j)|ei ∈ e, f j ∈ f }

is a basis of F(V ×W)/N.

Proof. Show that it is spanning by directly writing what is an element of F(V ×W)/N.
Show linear independence by using the universal theorem for a particular function. See
[26] for details.

Proposition A.1.2 (Uniqueness of the tensor product). Let ((V ⊗W)1, µ) a tensor product
satisfying definition A.1.1. Then there exists a isomorphism T : F(V ×W) → (V ⊗W)1 such
that

µ = F ◦ ϕ.

In other words, the tensor product is unique up to isomorphisms.

A.2 Norm on tensor product

Definition A.2.1 (Admissible norm). Let V a Banach space. We say that its tensor powers
are endowed with admissible norms if

1. For any n ≥ 1, for any permutation S of elements of v ∈ V⊗n, then

‖Sv‖ = ‖v‖.

2. For all n, m ≥ 1, v ∈ V⊗n, w ∈ V⊗m,

‖v⊗ w‖ ≤ ‖v‖‖w‖.
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Appendix B

Lie group

This section is based on the lecture notes [15] and from the textbook [20].

B.1 Definition of a Lie group

Definition B.1.1 (Topology). Let X be a set and τ a family of subsets of X. τ is a topology
if

• ∅ and X are in τ.

• Any union of elements of τ is in τ.

• Any finite intersection of elements of τ is in τ.

If τ is a topology, then (X, τ) is called a topological space.

A map f : X → Y between two topological spaces X and Y is called an homeomorphism
if it is continuous, invertible and its inverse is continuous.

Definition B.1.2 (Topological group). Let G be a group. A topology τ ⊂ P(G) endows
G with a structure of a topological group if the product map G×G → G and the inverse
map G → G are continuous.

Example B.1.1. We give two basic examples of topological groups.

• (Rn,+) endowed with the Euclidean topology is a topological group.

• GL(n, R) = {X ∈ Mn,n(R)|det(X) 6= 0} equipped with the natural topology (via
the identification of Mn,n with <n.n).

Definition B.1.3 (Locally compact Hausdorff space). A topological space X is Hausdorff
if any two distinct points have disjoint neighbourhoods. It is locally compact if for all
x ∈ X and for any V neighborhood of x, there is a compact neighbourhood W of x such
that x ∈W ⊆ V.

A topological space is called second countable if its topology has a countable base (B is
a base of a topology τ if any element of τ can be written as a union of elements of B).
We also recall that a function F : U → V for U and V open subsets of Rn and Rm is
called smooth if all its coordinates have continuous partial derivatives of all orders. If
in addition it is invertible and its inverse is mooth, F is called a differomorphism.
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Definition B.1.4 (Topological n-manifold). A topological n-manifold M is a Hausdorff,
second countable topological space such that every point of M has a neighbourhood
which is homeomorphic to an open subset of Rn. A pair (U, ϕ) consisting of an open
subset U ⊆ M and a map ϕ : U → ϕ(U) ⊆ Rn which is an homeomorphism onto its
image is a (coordinate) chart at any point of U.

A smooth structure on M is an atlas A = {(Uα, ϕα)|α ∈ A} whose domain covers M and
such that for all α, β ∈ A, the map τ : ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ) is smooth (that is C∞).
τ is called the transition map from ϕα to ϕβ. In this case, M is a smooth n-manifold.

Example B.1.2. Let E be a real vector space of dimension d < ∞. Then it is a topological
d-manyfold, for the topology induced by a norm on E. Indeed, let (e1, ..., ed) be a basis
of E, and π : Rd → E the isomorphism

π : x 7→
d

∑
i=1

xiei.

It is an homeomorphism so (E, π−1) is a coordinate chart.
We can also define a smooth structure on E by defining the atlas of all such coordinate
charts for any basis of E. Then let (e1, ..., ed) and (ẽ1, ..., ẽn) and other basis of E, ϕ and ψ
their associated maps, there exists an invertible matrix A ∈ Rd×d such that

ei =
d

∑
j=1

Aij ẽj,

so the transition map between the two charts is given by τ = ψ−1 ◦ ϕ so that if x ∈ Rd,
τ(x) = x̃ ∈ Rd we have

ψ(τ(x)) =
d

∑
j=1

x̃j ẽj = ϕ(x) =
d

∑
i=1

xiei =
d

∑
i,j=1

xi Aij ẽj.

So x̃j = ∑d
i=1 Aijxi, τ(x) = Ax is an invertible linear map and hence a diffeomorphism.

Definition B.1.5 (Smooth function). Suppose M is a smooth n-manifold, k > 0 and
f : M → Rk any function. We say that f is a smooth function if for any p ∈ M, there
exists a chart (U, ϕ) whose domain contains p and such that f ◦ ϕ−1 : ϕ(U) ⊆ Rn → Rk

is smooth.

The set of all smooth real-valued functions is denoted C∞(M).

We can extend this definition for functions between manifolds.

Definition B.1.6. Let M, N be smooth manifolds. F : M → N. F is said to be smooth
if, for any p ∈ M, there exists a chart (U, ϕ) with p ∈ U and (V, ψ) with F(p) ∈ V such
that ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V) is smooth.

Definition B.1.7 (Real Lie group). A Lie group G is a group endowed with the struc-
ture of a smooth manifold, in which the operations of multiplication and inversion are
smooth maps.

It is in particular a topological group (smooth maps are continuous).

Example B.1.3. GL(n, R) is a smooth n2-manifold. Product is a polynomial map and
inversion is a rational map so they are smooth maps. Thus it is a Lie group.
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B.2 Vector fields and Lie algebra

Definition B.2.1. Let M be a smooth manifold and p ∈ M. A linear map v : C∞(M)→ R

is called a derivation at p if it satisfies

v( f g) = f (p)v(g) + g(p)v( f ) for all f , g ∈ C∞(M).

The set of all derivations at p, denoted by Tp M is a vector space called tangent space to
M at p. An element of Tp M is called a tangent vector at p. We also define the tangent
bundle of M, denoted TM, which is the set of all tangent spaces at all points in M

TM = ä
p∈M

Tp M.

(Note that the union is disjoint).

Definition B.2.2 (Vector field). Let M be a smooth manifold. A vector field on M is
a continuous map X : M → TM, p 7→ Xp such that Xp ∈ Tp M for each p ∈ M. It
is smooth if for any f ∈ C∞(M), the map M →, p 7→ Xp( f ) is smooth. We denote
Vect∞(M) the set of all smooth vector fields on M.

A vector field should be visualized as we do for vector fields in an Euclidean space: a
set of arrows attached to points of M and tangent to it. Let M, N smooth manifolds and
F : M → N a smooth map. Then, we define the differential of F at p ∈ M as the map
dFp : Tp M→ TF(p)N such that for any v ∈ Tp M, f ∈ C∞(N)

dFp(v)( f ) = v( f ◦ F).

The function dFp(v) : C∞(N) → R is linear (because v is) and it is a derivation at F(p).
Let G a Lie group and Lg : G → G, h 7→ gh the left translation on G. Then, a vector field
X on G is said to be left-invariant if for any g, g′ ∈ G

d(Lg)g′(Xg′) = Xgg′ .

Definition B.2.3 (Lie algebra). A Lie algebra over a vector field K is a vector space V
endowed with a bilinear map V × V → V, (x, y) 7→ [x, y] which is antisymmetric and
satisfies the Jacobi identity, that is

1. (Antisymmetry) ∀x, y ∈ V [x, y] + [y, x] = 0,

2. (Jacobi identity) ∀x, y, z ∈ V [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A subset W ⊆ V of a Lie algebra V is a Lie subalgebra of V if it is closed under brackets.
In this case it is also a Lie algebra.

Proposition B.2.1. • Vect∞(M) for M smooth manifold is a Lie algebra.

• The set of all left-invariant smooth vector fields over a Lie group G is a Lie subalgebra of
Vect∞(G). It is called the Lie algebra of G, denoted by Lie(G).

One can prove that Lie(G) is finite dimensional and has the same dimension of G. The
Lie algebra provides a ”linear model” for the Lie group.

Theorem B.2.1. Let G be a Lie group with identity element e. The evaluation map

Lie(G) → Te

ε : X 7→ Xe

is a vector space isomorphism. Thus, Lie(G) is finite dimensional and has dimension dim(G).
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Appendix C

Tools

C.1 Controlled differential equations

Theorem C.1.1 (Picard’s theorem). Let V and W Banach spaces, L(V, W) the set of linear
mappings from V to W. We consider X : [0, 1] → V of finite p-variation with 1 ≤ p < 2,
Y : [0, 1] → W and f : W → L(V, W) Lipschitz(γ) with p < γ. The for every ξ ∈ W, the
controlled differential equation

dYt = f (Yt)dXt Y0 = ξ

has a unique solution. The solution mapping I f : BVp(V) ×W → BVp(W) is continuous
(with I f (X, ξ) the solution).

C.2 Stone - Weierstrass theorem

Theorem C.2.1 (Stone-Weierstrass). Suppose D is a compact Hausdorff space, C(D, ) the set
of continuous real-valued functions on D and A is a sub-algebra of C(D, ) which contains a
non-zero constant function. Then A is dense in C(D, ) if and only if it separates points (i.e.
∀x, y ∈ D ∃ f ∈ A s.t. f (x) 6= f (y)).

C.3 Least squares rate of convergence

We state here the main theorems from [13] used to prove theorem 3.2.1. We refer the
reader to [13] for the proofs. We consider a random vector (X, Y) where X ∈ Rd and
Y ∈ R and we want to find a measurable function f such that | f (X)− Y| is ”small” in
some sense. We let f ∗ = E[Y|X = x] our target function. We denote µ the density of X.

Proposition C.3.1. Assume F is a vector space of functions from Rd → R of dimension k
finite. Then if f1, ..., fk is a basis of F , the least squares estimator

f̂n = argmin f∈FRn( f )

can be written as f̂n = ∑k
j=1 β̂ j f j with β̂ = (β̂1, ..., β̂k) solution of

BTBβ̂ = BTY, (C.1)

with B = ( f j(Xi))i=1,...,n,j=1,...,k.
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C. Tools

Proof. Any f ∈ F can be rewritten as f = ∑k
j=1 β j f j for some β = (β1, ..., βk) ∈ Rk. Then

Rn( f ) =
1
n

n

∑
i=1

(Yi − f (Xi))
2 =

1
n

n

∑
i=1

(Yi −
k

∑
j=1

aj f j(Xi))
2 =

1
n
‖Y− Bβ‖2

2

with ‖.‖ the Euclidean norm in Rk. We are thus looking for

β̂ = argminβ∈Rk‖Y− Bβ‖2
2

This is the classical regression problem, and equation C.1 is well known.

Theorem C.3.1. Assume
σ2 = sup

x∈Rd
Var(Y|X = x) < ∞

Let f̂n = argmin f∈FRn( f ) with F a linear vector space of functions f : Rd → R, k its
dimension, f ∗(x) = E[Y|X = x] and for any function f ,

‖ f ‖n =
1
n

n

∑
i=1

f (Xi)
2.

Then

E
[
‖ f ∗ − f̂n‖2

n|X1, ..., Xn

]
≤ σ2 k

n
+ min

f∈F
‖ f ∗ − f ‖. (C.2)

Theorem C.3.2. Assume
σ2 = sup

x∈Rd
Var(Y|X = x) < ∞

and
‖ f ∗‖∞ = supx∈Rd | f (x|) ≤ L

for some L > 0. Let F be a linear space of functions f : Rd → R of dimension k. We define
f̂n = arg min f∈FRn( f ) and f̂ L

n such that for any x ∈ Rd

f̂ L
n (x) =

{
f̂n(x) if |x| ≤ L
Lsign(x) else

Then, there exists a constant c such that

E

(∫
( f̂ L

n (x)− f ∗(x))2µ(dx)
)
≤c max(σ2, L2)

(log(n) + 1)k
n

+ 8 inf
f∈F

∫
( f (x)− f ∗(x))2µ(dx).

(C.3)

52



Bibliography

[1] Donald J Berndt. Finding patterns in time series: a dynamic programming ap-
proach. Advances in knowledge discovery and data mining, 1996.

[2] Horatio Boedihardjo and Xi Geng. The uniqueness of signature problem in the
non-markov setting. Stochastic Processes and their Applications, 125(12):4674–4701,
2015.

[3] Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature of a
rough path: uniqueness. Advances in Mathematics, 293:720–737, 2016.

[4] Kuo-sai Chen. Integration of paths—a faithful representation of paths by non-
commutative formal power series. Transactions of the American Mathematical Society,
89(2):395–407, 1958.

[5] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Ab-
dullah Mueen, and Gustavo Batista. The ucr time series classification archive, July
2015. www.cs.ucr.edu/~eamonn/time_series_data/.

[6] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in
machine learning. arXiv preprint arXiv:1603.03788, 2016.

[7] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
http://archive.ics.uci.edu/ml.

[8] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.
Querying and mining of time series data: experimental comparison of representa-
tions and distance measures. Proceedings of the VLDB Endowment, 1(2):1542–1552,
2008.

[9] Terry Lyons et al. Coropa computational rough paths (software library), 2010.
http://coropa.sourceforge.net/.

[10] Frédéric Ferraty and Philippe Vieu. Nonparametric functional data analysis: theory and
practice. Springer Science & Business Media, 2006.

[11] Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths:
theory and applications, volume 120. Cambridge University Press, 2010.

[12] Benjamin Graham. Sparse arrays of signatures for online character recognition.
arXiv preprint arXiv:1308.0371, 2013.

53

www.cs.ucr.edu/~eamonn/time_series_data/


Bibliography
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