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1 Context

Rungis Market is the largest fresh produce market in the world, in particular, it supplies 63% of the food
consumed in Île-de-France. The company Califrais is its official digital and logistics operator through
the platform rungismarket.com. With the aim of digitalizing and decarbonizing the food supply chain,
Califrais develops logistics solutions based on algorithms at the crossroads of machine learning, statistics
and optimization.

Califrais has strong connections with public research and works with academic partners such as the
Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université and the CNRS.
This privileged context has led to numerous publications in leading conferences of machine learning, such
as ICML and NeurIPS.

We are offering this research internship as part of a collaboration between Califrais and the LPSM. Its aim
is to study recent tools at the intersection of machine learning and combinatorial optimization that allow
to jointly “learn and optimize”. It is funded by the French Agency for Ecological Transition (ADEME)
under the call “Logistique 4.0” won by Califrais and Sorbonne Université. The internship is designed to
lead to a Ph.D. in October 2025.

2 Subject

Califrais has a history of several years of daily order and delivery data for thousands of fresh products and
hundreds of customers. Extracting information from this large amount of data is critical for a variety of
tasks: predictive analysis of demand or customer satisfaction, inventory optimization of perishable goods
or routing optimization. However, these data present many challenges and domain-specific characteristics;
in particular, they have a lot of noise and non-stationarity. This is due to the specificity of fresh products:
many external factors affect both supply and demand of these products, such as weather, shortages,
political and global economic factors,...

Several research topics at Califrais fall into the domain of discrete optimization but parameters of these
optimization problems are often unknown quantities. For example, to optimize an inventory, it is neces-
sary to take into account future demands which are unknown. Similarly, in routing problems, travel times
are unknown but these are crucial quantities in the optimization to satisfy customer delivery constraints,
modeled as time window in which the delivery must take place. To handle these unknown quantities,
the traditional procedure is to have a two-steps approach: first predict the unknown quantities, and
then optimize. However, this approach is not completely satisfactory since the predicted quantities are
then treated by the optimization algorithm as true quantities. In other words, their uncertainty is not
accounted for. When dealing with noisy signals, which is the case for food supply chain, this leads to
optimization algorithms that “overfit” on prediction errors.

Therefore, it is natural to turn to approaches that tackle both learning and optimization tasks together.
This is a rich and diverse domain; see, for example, Donti et al. (2017); Bengio et al. (2021); Bai et al.
(2023); Mandi et al. (2024); Sadana et al. (2025); Vivier-Ardisson et al. (2024). A recent and promising
direction is the use of combinatorial optimization layers together with machine learning models (Berthet
et al., 2020; Dalle et al., 2022). The idea is to treat a combinatorial optimization solver as a black-box
component in a machine learning pipeline, through wich gradients can be back-propagated. The pipeline
can be summarized as follows:

Input x ∈ X → ML prediction → Parameters θ = hw(x) → CO layer → Solution y = f(θ). (1)

An input x is given to a learning algorithm hw, where w are the parameters of the model, which outputs
a vector θ = hw(x). This parameter θ defines the optimization objective, which typically writes as

argmax
v∈Y

θ⊤v, (2)
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where Y is a discrete set. Some algorithm, either an exact solver or a heuristics, outputs a solution of
(2), denoted by y = f(θ). The goal is then to find the parameters w that will give good final solutions
y. Training is typically done in a supervised setting: given a dataset of pairs of problems and solutions
{(xi, yi)}i=1,...,n and a distance function ℓ on the space Y, the goal is to minimize the loss

Ln =

n∑
i=1

ℓ
(
f(hw(xi)), yi

)
.

The first objective of the internship will be to apply this general framework to the routing problem of
Califrais. A starting point can be the work by Baty et al. (2024), which explores a related dynamic
vehicle problem. Our problem is the following: given a graph, denoted by (V,A), where V denotes the
set of vertices (|V| = n) and A the set of edges, the goal is to partition this graph in different routes, each
corresponding to a vehicle. One of the vertices of the graph corresponds to the depot (think, Rungis)
from which all the routes have to begin and come back, and every other vertex corresponds to a client.
Each vertex is associated to a target delivery time window [ai, bi]. The objective is to minimize the
travel time under the constraint that the delivery at node i has to happen within the time window. The
problem is that the time to go from one vertex to another is unknown a priori, which is where machine
learning tools come into play. Formally, if we denote by Y ⊂ {0, 1}n×n the set of feasible solutions, where
a solution y ∈ Y is represented as: yij = 1 if a route goes from node i to node j, then, theoretically, we
would like to minimize

min
y∈Y

∑
(i,j)∈A

ci,j(y)yi,j , (3)

where ci,j(y) denotes the travel time to go from node i to node j for the solution y. The complicated
aspect is that the travel time depends on the hour of the day, meaning that it depends on all the other
vertices visited before node j on the route, and not only on the previously visited node i. In other words,
in (3), we do not have a cost ci,j but a cost ci,j(y). Following the pipeline presented above, a promising
direction would be to replace these complicated costs ci,j(y) by a ML algorithm, meaning that problem
(3) is replaced by

min
y∈Y

∑
(i,j)∈A

(hw(x))i,jyi,j . (4)

A second step would be to transform this vehicle routing problem into a dynamic one, splitting the
delivery period into several epochs, and to assume the travel times as constant within each epoch.

Having familiarised with these tools and implemented an initial solution for the vehicle routing applica-
tion, we will take a step back and look at the theoretical guarantees associated with pipelines of the form
(1). Several directions can be undertaken, such as combining statistical learning guarantees on the ML
prediction algorithm with results on the combinatorial optimization side, or investigating other learning
paradigms such as reinforcement learning or active learning.

3 Practical conditions

This internship is part of a collaboration between Califrais and the LPSM at Sorbonne Université.

• Location: the internship will take place in both locations (Paris 75005 and Paris 75010).

• Duration: 5 to 6 months between February and September 2025.

• Profile: M2 research in applied mathematics or third year of engineering school.

• Grant: 4, 35e/h, being around 600e/month.

The supervising team will consist of:

• Adeline Fermanian, Califrais

• Maxime Sangnier, Sorbonne Université

4 Application

The application file containing:
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• a resume;

• a cover letter;

• a transcript of grades (Bachelor’s and Master’s degrees);

should be sent by mail to adeline.fermanian@califrais.fr and maxime.sangnier@sorbonne-universite.fr.
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